Advances in nonlinear model reduction: least-squares Petrov—Galerkin projection and machine-learning error models

Kevin Carlberg

Sandia National Laboratories

SAMSI MUMS Opening Workshop Duke University August 21, 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

High-fidelity simulation

- + Indispensable across science and engineering
- High fidelity: extreme-scale nonlinear dynamical system models

Antarctic ice sheet modeling courtesy R. Tuminaro, Sandia

Magnetohydrodynamics courtesy J. Shadid, Sandia

computational barrier

Many-query problems

- uncertainty propagation
- multi-objective optimization

Bayesian inference

stochastic optimization

High-fidelity simulation: captive carry

High-fidelity simulation: captive carry

- + Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Many-query problems

- explore flight envelope
- quantify effects of uncertainties on store load
- robust design of store and cavity

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Many-query problem: solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$

Idea: exploit simulation data collected at a few points

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Model reduction criteria

- 1. Accuracy: achieves less than 1% error
- 2. Low cost: achieves at least 100x computational savings
- 3. Structure preservation: preserves important physical properties
- 4. Reliability: guaranteed satisfaction of any error tolerance (fail safe)
- 5. *Certification:* quantifies ROM-induced epistemic uncertainty

Model reduction: previous state of the art

Linear time-invariant systems: mature [Antoulas, 2005]

- Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
- Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]
- + Accurate, reliable, certified: sharp a priori error bounds
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: guaranteed stability

Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

- Reduced-basis method
- + Accurate, reliable, certified: sharp a priori error bounds, convergence
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: preserve operator properties

Nonlinear dynamical systems: ineffective

- Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987]
- *Inaccurate, unreliable*: often unstable
- Not certified: error bounds grow exponentially in time
- *Expensive*: projection insufficient for speedup
- Structure not preserved: dynamical-system properties ignored

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- Iow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [c., 2015]
- certification: machine learning error models [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [c., 2015]
- *certification*: machine learning error models [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Collaborators:

- Matthew Barone (Sandia)
- Harbir Antil (GMU)

- Charbel Farhat (Stanford University)
- Julien Cortial (Stanford University)

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding

Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding

Φ columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

Previous state of the art: POD-Galerkin

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$
- 1. Reduce the number of unknowns 2. Reduce the number of equations

Galerkin ODE:
$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t, \boldsymbol{\mu})$$

Captive carry

→ Unsteady Navier-Stokes → Re = 6.3×10^6 → $M_{\infty} = 0.6$

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

High-fidelity model solution

pressure field

Principal components

 ϕ_{101}

 ϕ_{401}

Galerkin performance

- Galerkin projection fails regardless of basis dimension

Can we construct a better projection?

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

Galerkin ODE

$$\Phi \frac{d\hat{\mathbf{x}}}{dt} = \Phi \Phi^{\mathsf{T}} \mathbf{f}(\Phi \hat{\mathbf{x}}; t)$$

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{v}, \mathbf{x}; t)||_{2}$$

$$\mathbf{r}(\mathbf{v}, \mathbf{x}; t) := \mathbf{v} - \mathbf{f}(\mathbf{x}; t)$$

ΟΔΕ

$$\mathbf{r}^n(\mathbf{x}^n) = 0$$
, $n = 1, \dots, T$

$$\mathbf{\Phi}^T \mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{x}}^n) = 0, \quad n = 1, ..., T$$

$$\mathbf{r}^{n}(\mathbf{x}) := \alpha_{0}\mathbf{x} - \Delta t \beta_{0}\mathbf{f}(\mathbf{x}; t^{n}) + \sum_{j=1}^{k} \alpha_{j}\mathbf{x}^{n-j} - \Delta t \sum_{j=1}^{k} \beta_{j}\mathbf{f}(\mathbf{x}^{n-j}; t^{n-j})$$

- Time-discrete Galerkin solution: not generally optimal in any sense

Residual minimization and time discretization

[C., Bou-Mosleh, Farhat, 2011]

$$\begin{split} \mathbf{\Phi} \hat{\mathbf{x}}^n &= \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{argmin}} \| \mathbf{A} \mathbf{r}^n(\mathbf{v}) \|_2 \quad \Leftrightarrow \quad \mathbf{\Psi}^n(\hat{\mathbf{x}}^n)^T \mathbf{r}^n(\mathbf{\Phi} \hat{\mathbf{x}}^n) = 0 \\ \mathbf{\Psi}^n(\hat{\mathbf{x}}^n) &:= \mathbf{A}^T \mathbf{A} (\alpha_0 \mathbf{I} - \Delta t \beta_0 \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{\Phi} \hat{\mathbf{x}}^n; t)) \mathbf{\Phi} \end{split}$$

Least-squares Petrov-Galerkin (LSPG) projection

Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,
- 3. A backward differentiation formula (BDF) time integrator is used,
- 4. LSPG employs $\mathbf{A} = \mathbf{I}$, then

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n}\|_{2} \leq \frac{1}{h}\|\mathbf{r}_{\mathsf{G}}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n-\ell}\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{1}{h}\min_{\hat{\mathbf{v}}}\|\mathbf{r}_{\mathsf{LSPG}}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n-\ell}\|_{2}$$

+ LSPG sequentially minimizes the error bound

LSPG performance

+ LSPG is far more accurate than Galerkin

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013*]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [C., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Wall-time problem

- High-fidelity simulation: 1 hour, 48 cores
- → Fastest LSPG simulation: 1.3 hours, 48 cores

Why does this occur?
Can we fix it?

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

minimize $\| \mathbf{A} \mathbf{r}^n (\mathbf{\Phi} \hat{\mathbf{v}}) \|_2$

Can we select A to make this less expensive?

- 1. **Training**: collect residual tensor \mathcal{R}^{ijk} while solving ODE for $m{\mu} \in \mathcal{D}_{\mathsf{training}}$
- 2. **Machine learning**: compute residual PCA Φ_r and sampling matrix P
- 3. **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+\mathbf{P}\mathbf{r}^n$

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

Can we select A to make this less expensive?

- 1. **Training**: collect residual tensor \mathcal{R}^{ijk} while solving ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: compute residual PCA Φ_r and sampling matrix P
- 3. **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+ \mathbf{P}\mathbf{r}^n$

Sample mesh [C., Farhat, Cortial, Amsallem, 2013]

+ HPC on a laptop

vorticity field

pressure field

LSPG ROM with

$$\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathbf{r}})^{+}\mathbf{P}$$

32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

Implemented in three computational-mechanics codes at Sandia

Ahmed body [Ahmed, Ramm, Faitin, 1984]

Large of the bound of the bou

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5} \text{s}$
- 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

sample mesh

+ HPC on a laptop

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathbf{r}})^{+}\mathbf{P}$

4 hours, 4 cores

high-fidelity model 13 hours, 512 cores

+ 438x savings in core—hours

+ Largest nonlinear dynamical system on which ROM has ever had success

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [C., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [C., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- reliability: adaptivity [C., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
- reliability: adaptivity [C., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2018]

Collaborators:

- Martin Drohmann (formerly Sandia)
- Wayne Uy (Cornell University)
- Fei Lu (Johns Hopkins University)

- Matthias Morzfeld (U of Arizona)
- Brian Freno (Sandia)

Surrogate modeling in UQ

inputs
$$\mu \rightarrow \left(\begin{array}{c} \textit{high-fidelity model} \end{array}\right) \rightarrow \textit{outputs } \mathbf{q}_{\mathsf{HFM}}$$

- ullet high-fidelity-model (HFM) noise model: $oldsymbol{q}_{\mathsf{meas}} = oldsymbol{q}_{\mathsf{HFM}}(\mu) + arepsilon$
- measurement noise ε has probability distribution $\pi_{\varepsilon}(\cdot)$
- HFM likelihood: $\pi_{\mathsf{HFM}}(\mathbf{q}_{\mathsf{meas}} \,|\, \boldsymbol{\mu}) = \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\mathsf{meas}} \mathbf{q}_{\mathsf{HFM}}(\boldsymbol{\mu}))$

inputs
$$\mu \rightarrow \left(\begin{array}{c} \textit{surrogate model} \end{array}\right) \rightarrow \textit{outputs } \mathbf{q}_{\textit{surr}}$$

- surrogate noise model: $\mathbf{q}_{\mathsf{meas}} = \mathbf{q}_{\mathsf{surr}}(\mu) + \varepsilon$
- surrogate likelihood: $\pi_{\mathsf{surr}}(\mathbf{q}_{\mathsf{meas}} \,|\, \boldsymbol{\mu}) = \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\mathsf{meas}} \mathbf{q}_{\mathsf{surr}}(\boldsymbol{\mu}))$
 - inconsistent with HFM noise model

Surrogate modeling in UQ

$$\mathbf{q}_{\mathsf{HFM}}(\mu) = \mathbf{q}_{\mathsf{surr}}(\mu) + \boldsymbol{\delta}(\mu)$$

- + HFM noise model: $\mathbf{q}_{\mathsf{meas}} = \mathbf{q}_{\mathsf{HFM}}(\mu) + arepsilon$ $= \mathbf{q}_{\mathsf{surr}}(\mu) + \pmb{\delta}(\mu) + arepsilon$
- HFM likelihood: $\pi_{\mathsf{HFM}}(\mathbf{q}_{\mathsf{meas}} \mid \boldsymbol{\mu}) = \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\mathsf{meas}} \mathbf{q}_{\mathsf{HFM}}(\boldsymbol{\mu}))$ $= \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\mathsf{meas}} \mathbf{q}_{\mathsf{surr}}(\boldsymbol{\mu}) \boldsymbol{\delta}(\boldsymbol{\mu}))$
- equivalent to HFM formulation
- + not practical: the (deterministic) error $\delta(\mu)$ is generally unknown

How can we account for the error $\delta(\mu)$ in a manner that is consistent and practical?

Surrogate modeling in UQ

$$\mathbf{q}_{\mathsf{HFM}}(\mu) = \mathbf{q}_{\mathsf{surr}}(\mu) + \boldsymbol{\delta}(\mu)$$

Approach: statistical model $\delta(\mu)$ for the error that models its uncertainty

$$ilde{\mathbf{q}}_{\mathsf{HFM}}(\mu) = \mathbf{q}_{\mathsf{surr}}(\mu) + \tilde{\boldsymbol{\delta}}(\mu)$$
stochastic deterministic stochastic

ullet statistical HFM noise model: $oldsymbol{\mathsf{q}}_{\mathsf{meas}} = oldsymbol{ ilde{\mathsf{q}}}_{\mathsf{HFM}}(\mu) + arepsilon$

$$= \mathtt{q}_{\mathsf{surr}}(oldsymbol{\mu}) + ilde{oldsymbol{\delta}}(oldsymbol{\mu}) + oldsymbol{arepsilon}$$

- stochastic HFM likelihood: $\pi_{\widetilde{\mathsf{HFM}}}(\mathbf{q}_{\mathsf{meas}} \,|\, \boldsymbol{\mu}) = \pi_{\boldsymbol{\varepsilon} + \widetilde{\boldsymbol{\delta}}}(\mathbf{q}_{\mathsf{meas}} \mathbf{q}_{\mathsf{surr}}(\boldsymbol{\mu}))$
- + consistent with HFM noise model
- + practical if the statistical error model $\tilde{\delta}$ is computable

Desired properties in statistical error model $\tilde{\delta}(\mu)$

- 1. cheaply computable: similar cost to evaluating the surrogate
- 2. low variance: introduces little epistemic uncertainty
- 3. generalizable: correctly models the error

How can we construct a statistical error model for reduced-order models?

Approximate-solution surrogate models

High-fidelity model

- governing equations: $\mathbf{r}(\mathbf{x}(\mu); \mu) = \mathbf{0}$
- quantity of interest: $q_{\mathsf{HFM}}(\mu) := q(\mathsf{x}(\mu))$

Approximate-solution surrogate model

- approximate solution: $\tilde{\mathbf{x}}(\mu) \approx \mathbf{x}(\mu)$
- quantity of interest: $q_{\text{surr}}(\mu) := q(\tilde{\mathbf{x}}(\mu))$

Types of approximate solutions

Reduced-order model:

$$\mathbf{\Psi}^{T}\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}};\mathbf{\mu})=\mathbf{0},\quad \tilde{\mathbf{x}}=\mathbf{\Phi}\hat{\mathbf{x}}$$

Low-fidelity model:

$$\mathbf{r}_{\mathsf{LF}}(\mathbf{x}_{\mathsf{LF}}; \boldsymbol{\mu}) = \mathbf{0}, \quad \tilde{\mathbf{x}} = \mathbf{p}(\mathbf{x}_{\mathsf{LF}})$$

• Inexact solution: compute $\mathbf{x}^{(k)}$, k = 1, ..., K such that

$$\|\mathbf{r}(\mathbf{x}^{(K)}; \boldsymbol{\mu}) = \mathbf{0}\|_2 \le \epsilon, \quad \tilde{\mathbf{x}} = \mathbf{x}^{(K)}$$

What methods exist for quantifying the error $\delta(\mu) := q_{\mathsf{HFM}}(\mu) - q_{\mathsf{surr}}(\mu)$?

1) Error indicators: residual norm

HFM governing equations: $\mathbf{r}(\mathbf{x}(\mu); \mu) = \mathbf{0}$ (1)

• Approximate solution: $\tilde{\mathbf{x}}(\mu) \approx \mathbf{x}(\mu)$ (2)

Substitute (2) into the residual of (1) and take the norm:

 $\|\mathbf{r}(\tilde{\mathbf{x}}; \boldsymbol{\mu})\|_2$

- Applications: termination criterion, greedy methods, trust regions [Bui-Thanh et al., 2008; Hine and Kunkel, 2012; Wu and Hetmaniuk, 2015; Zahr, 2016]
- + Informative: zero for high-fidelity model
- Deterministic: not a statistical error model
- Low quality: relationship to error depends on conditioning

1) Error indicators: dual-weighted residual

Approximate HFM quantity of interest to first order

$$q(\mathbf{x}) = q(\tilde{\mathbf{x}}) + \frac{\partial q}{\partial \mathbf{x}}(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$
 (1)

Approximate HFM residual to first order

$$\mathbf{0} = \mathbf{r}(\mathbf{x}) = \mathbf{r}(\tilde{\mathbf{x}}) + \frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

Solve for the error

$$\mathbf{x} - \tilde{\mathbf{x}} = -\left[\frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})\right]^{-1} \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$
 (2)

Substitute (2) in (1): $q(\mathbf{x}) - q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^T \mathbf{y} = -\frac{\partial q}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^T$$

Applications: adaptive mesh refinement

[Babuska and Miller, 1984; Becker and Rannacher, 1996; Rannacher, 1999; Venditti and Darmofal, 2000; Fidkowski, 2007]

- + *Accurate*: second-order-accurate approximation
- Deterministic: not a statistical error model

2) Rigorous a posteriori error bound

Proposition

If the following conditions hold:

1. $\mathbf{r}(\cdot; \boldsymbol{\mu})$ is inf-sup stable, i.e., for all $\boldsymbol{\mu} \in \mathcal{D}$, there exists $\alpha(\boldsymbol{\mu}) > 0$ s.t. $\|\mathbf{r}(\mathbf{z}_1; \boldsymbol{\mu}) - \mathbf{r}(\mathbf{z}_2; \boldsymbol{\mu})\|_2 \ge \alpha(\boldsymbol{\mu}) \|\mathbf{z}_1 - \mathbf{z}_2\|_2$, $\forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$

2. $q(\cdot)$ is Lipschitz continuous, i.e., there exits $\beta > 0$ such that

$$|q(\mathbf{z}_1) - q(\mathbf{z}_2)| \leq \beta \|\mathbf{z}_1 - \mathbf{z}_2\|_2, \quad \forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$$

then the quantity-of-interest error can be bounded as

$$|q(\mathbf{x}) - q(\tilde{\mathbf{x}})| \leq \frac{\beta}{\alpha} ||\mathbf{r}(\tilde{\mathbf{x}}; \boldsymbol{\mu})||_2$$

Applications: reduced-order models

[Rathinam and Petzold, 2003; Grepl and Patera, 2005; Antoulas, 2005; Hinze and Volkwein, 2005; C. et al., 2017]

- + Certification: guaranteed bound
- Lack sharpness: orders-of-magnitude overestimation
- *Difficult to implement*: require bounds for inf-sup/Lipschitz constants
- Deterministic: not a statistical error model

3) Model-discrepancy approach

- Applications:
 - Model calibration [Kennedy, O'Hagan, 2001; Higdon et al., 2003; Higdon et al., 2004]
 - Multifidelity optimization [Gano et al., 2005; Huang et al., 2006; March, Willcox, 2012; Ng, Eldred, 2012]
- + General: applicable to any surrogate model
- + Statistical: interpretable as a statistical error model
- + Epistemic uncertainty quantified: through variance
- *Poorly informative inputs*: parameters μ weakly related to the error
- Poor scalability: difficult in high-dimensional parameter spaces
- Thus, can introduce large epistemic uncertainty: large variance

Objective

Goal: combine the strengths of

- 1. error indicators,
- 2. rigorous a posteriori error bounds, and
- 3. the model-discrepancy approach

A posteriori: use residual-based quantities computed by the surrogate

- strength of #1 and #2
- + Informative inputs: quantities are strongly related to the error
- + Thus, can lead to lower epistemic uncertainty: lower variance

Error modeling: statistical model for the error

- strength of #3
- + Statistical: interpretable as a statistical error model
- + *Epistemic uncertainty quantified*: through variance

Main idea

Observation: residual-based quantities are informative of the error

- So, these are informative features: can predict the error with low variance
 - Idea: Apply machine learning regression to generate a mapping from residual-based quantities to a random variable for the error
 - + Can produce lower-variance models than the model-discrepancy approach

Machine-learning error models

Machine-learning error models: formulation

$$\delta(\boldsymbol{\mu}) = \underbrace{f(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{deterministic}} + \underbrace{\epsilon(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{stochastic}}$$

- features: $ho(\mu) \in \mathbb{R}^{N_{oldsymbol{
 ho}}}$
- regression function: $f(\rho) = E[\delta \mid \rho]$
- noise: $\epsilon(\rho)$
- *Note*: model-discrepancy approach uses $ho = \mu$

$$\tilde{\delta}(\boldsymbol{\mu}) = \underbrace{\tilde{f}(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{deterministic}} + \underbrace{\tilde{\epsilon}(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{stochastic}}$$

- regression-function model: $\tilde{f}(\approx f)$
- noise model: $\tilde{\epsilon} (\approx \epsilon)$
- Desired properties in error model §
 - 1. cheaply computable: features $ho(\mu)$ are inexpensive to compute
 - 2. low variance: noise model $\tilde{\epsilon}(\rho)$ has low variance
 - 3. generalizable: empirical distributions of δ and $\tilde{\delta}$ 'close' on test data

- 1. *Training:* Solve high-fidelity and multiple surrogates for $\,\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

high-fidelity model

surrogate models

1. *Training:* Solve high-fidelity and multiple surrogates for $\,\mu \in \mathcal{D}_{\mathsf{training}}$

 $\delta = q_{\mathsf{HFM}} - q_{\mathsf{surr}}$

- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

model

surrogate models

- 1. *Training:* Solve high-fidelity and multiple surrogates for $\,\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

high-fidelity model

surrogate models

- 1. *Training:* Solve high-fidelity and multiple surrogates for $\,\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. Reduction: predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

high-fidelity model

surrogate models

- 1. *Training:* Solve high-fidelity and multiple surrogates for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model

models

3. Reduction: predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

41

model

- 1. Training: Solve high-fidelity and multiple surrogates for $\,\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

- randomly divide data into (1) training data and (2) testing data
- ' construct regression-function model \tilde{f} via cross validation on ${\bf training\ data}$
- ightharpoonup construct noise model $ilde{\epsilon}$ from sample variance on **test data**

Reduction

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict surrogate-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

$$ilde{ ilde{q}}_{\mathsf{HFM}}(\mu) = ext{$rac{ extstyle q_{\mathsf{surr}}(\mu)}{\mathsf{deterministic}}} + ilde{ ilde{\delta}}(\mu)$$

Error-model construction

$$\tilde{\delta}(\boldsymbol{\mu}) = \tilde{f}(\boldsymbol{\rho}(\boldsymbol{\mu})) + \tilde{\epsilon}(\boldsymbol{\rho}(\boldsymbol{\mu}))$$

Feature engineering: select features ρ to trade off:

- 1. Number of features
 - → Large number: costly, low variance, high-capacity regression
 - → Small number: cheap, high variance, low-capacity regression
- 2. Quality of features
 - → High quality: expensive, low variance
 - → Low quality: cheap, high variance

Regression model: construct regression model \tilde{f} to trade off:

- → High capacity: low variance, more data to generalize
- → Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression [Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression [Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Error-model construction

$$\tilde{\delta}(\boldsymbol{\mu}) = \tilde{f}(\boldsymbol{\rho}(\boldsymbol{\mu})) + \tilde{\epsilon}(\boldsymbol{\rho}(\boldsymbol{\mu}))$$

Feature engineering: select features ρ to trade off:

- 1. Number of features
 - → Large number: costly, low variance, high-capacity regression
 - → Small number: cheap, high variance, low-capacity regression
- 2. Quality of features
 - → High quality: expensive, low variance
 - → Low quality: cheap, high variance

Regression model: construct regression model \tilde{f} to trade off:

- → High capacity: low variance, more data to generalize
- → Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression [Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression [Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Feature: dual-weighted residual [Drohmann, C., 2015]

$$q(\mathbf{x}) - q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^T \mathbf{y} = -\frac{\partial q}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^T$$

Want to avoid HFM-scale solves, so approximate dual as

$$\mathbf{y} \approx \tilde{\mathbf{y}} = \mathbf{\Phi}_{\mathbf{y}} \hat{\mathbf{y}}$$

and construct a ROM for the dual

$$\mathbf{\Phi}_{\mathbf{y}}^{T} \frac{\partial \mathbf{r}}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^{T} \mathbf{\Phi}_{\mathbf{y}} \hat{\mathbf{y}} = -\mathbf{\Phi}_{\mathbf{y}}^{T} \frac{\partial \mathbf{q}}{\partial \mathbf{x}} (\tilde{\mathbf{x}})^{T}$$

- One feature: $q(x) q(\tilde{x}) \approx \hat{y}^T \Phi_y^T r(\tilde{x})$
 - ightharpoonup can control feature quality via dimension of Φ_y
- Regression model: Gaussian process [Rasmussen, Williams, 2006]

Application: Bayesian inference

$$\triangle c(x; \mu) u(x; \mu) = 0 \text{ in } \Omega$$
 $\mathbf{x}(\mu) = 0 \text{ on } \Gamma_D$ $\nabla c(\mu) \mathbf{x}(\mu) \cdot n = 0 \text{ on } \Gamma_{N_0}$ $\nabla c(\mu) \mathbf{x}(\mu) \cdot n = 1 \text{ on } \Gamma_{N_1}$

- Inputs $\mu \in [0.1, 10]^9$ define diffusivity in c in subdomains
- Outputs q are 24 measured temperatures
- ROM constructed via RB-Greedy [Patera and Rozza, 2006]
- $\pi_{\mathsf{prior}}(\boldsymbol{\mu})$: Gaussian with variance 0.1
- $m{\epsilon} \sim \mathcal{N}(0, 1 imes 10^{-3})$
- ightharpoonup Posterior sampling: $1 imes 10^5$ samples w/ implicit sampling [Tu et al., 2013]

Machine learning error models

Wall-time performance

- ROM:
 - + cheapest
 - inconsistent formulation

Wall-time performance

- ROM:
 - + cheapest
 - inconsistent formulation
- ROM + error models:
 - + cheaper than HFM
 - more expensive than ROM
 - + consistent formulation

Posteriors: ROM

 $\pi_{\mathsf{post}}^{\mathsf{surr}}(oldsymbol{\mu} \,|\, \mathbf{q}_{\mathsf{meas}})$

- + HFM posterior: close to true parameters
- ROM posterior: far from prior and true parameters

Posteriors: ROM + high-variance error model

+ ROM + high-variance error model posterior: close to prior

Posteriors: ROM + low-variance error model

+ ROM + low-variance error model posterior: close to HFM posterior

Error-model construction

$$\tilde{\delta}(\boldsymbol{\mu}) = \tilde{f}(\boldsymbol{\rho}(\boldsymbol{\mu})) + \tilde{\epsilon}(\boldsymbol{\rho}(\boldsymbol{\mu}))$$

Feature engineering: select features ρ to trade off:

- 1. Number of features
 - → Large number: costly, low variance, high-capacity regression
 - → Small number: cheap, high variance, low-capacity regression
- 2. Quality of features
 - → High quality: expensive, low variance
 - → Low quality: cheap, high variance

Regression model: construct regression model \tilde{f} to trade off:

- → High capacity: low variance, more data to generalize
- → Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression [Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression [Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Feature engineering [Freno, C., 2018]

Idea: Use traditional error quantification as inspiration for features

1. Error indicators:

- residual norm: $\|\mathbf{r}(\tilde{\mathbf{x}}; \boldsymbol{\mu})\|_2$
- dual-weighted residual: $q(\mathbf{x}) q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} \tilde{\mathbf{x}}\|^2)$
- 2. Rigorous *a posteriori* error bound: $|q(\mathbf{x}) q(\tilde{\mathbf{x}})| \leq \frac{\beta}{\alpha} ||\mathbf{r}(\tilde{\mathbf{x}}; \boldsymbol{\mu})||_2$
- 3. Model discrepancy: $\tilde{\delta}(\boldsymbol{\mu}) \sim \mathcal{N}(\mu(\boldsymbol{\mu}); \sigma^2(\boldsymbol{\mu}))$

Proposed features:

- ullet parameters μ
 - low quality, cheap
 - used by model discrepancy
- residual norm $\|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}};\boldsymbol{\mu})\|_2$
 - small number, low quality, costly
- residual $\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}}; \boldsymbol{\mu})$
 - large number, low quality, costly

- residual samples $Pr(\Phi \hat{x}; \mu)$
 - + moderate number, cheap
 - low quality
- residual PCA $\hat{\mathbf{r}} := \mathbf{\Phi}_{\mathbf{r}}^T \mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}}; \boldsymbol{\mu})$
 - + moderate number, high-quality
 - costly
- gappy PCA $\hat{\mathbf{r}}_g := (\mathbf{P}\mathbf{\Phi}_{\mathsf{r}})^+ \mathbf{Pr}(\mathbf{\Phi}\hat{\mathbf{x}}; \boldsymbol{\mu})$
 - + moderate number, high-quality
 - + cheap

- high-fidelity model dimension: 2.8×10^5
- reduced-order model dimensions: 1, ..., 5
- $ightharpoonup inputs~\mu$: elastic modulus, Poisson ratio, applied pressure
- quantities of interest: y-displacement at A, radial displacement at B
- training data: 150 training examples, 150 testing examples

radial displacement at B $\log_{10}(1-R^2)$

parameters (model-discrepancy approach): large variance

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance

Kevin Carlberg

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly
- + gappy PCA of the residual: nearly as low variance, but much cheaper

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly
- + gappy PCA of the residual: nearly as low variance, but much cheaper
- + neural networks and SVR: RBF yield lowest-variance models

- Traditional features μ and $\|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}}; \mu)\|_2$:
 - high noise variance
 - expensive for $\|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{x}};\boldsymbol{\mu})\|_2$: compute entire residual
- Proposed features $[\mu; \hat{\mathbf{r}}_g]$:
 - + low noise variance
 - + extremely cheap: only compute 10 elements of the residual

Summary

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- Iow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
- reliability: adaptivity [c., 2015]
- certification: machine learning error models [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Questions?

LSPG reduced-order model:

- C, Barone, and Antil. "Galerkin v. least-squares Petrov—Galerkin projection in nonlinear model reduction," Journal of Computational Physics, Vol. 330, p. 693— 734 (2017).
- C, Farhat, Cortial, and Amsallem. "The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows," Journal of Computational Physics, Vol. 242, p. 623–647 (2013).
- C, Bou-Mosleh, and Farhat. "Efficient non-linear model reduction via a least-squares Petrov—Galerkin projection and compressive tensor approximations," International Journal for Numerical Methods in Engineering, Vol. 86, No. 2, p. 155–181 (2011).

Machine-learning error models:

- Freno, C. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations," arXiv e-Print, 1808.02097 (2018).
- Trehan, C, and Durlofsky. "Error modeling for surrogates of dynamical systems using machine learning," International Journal for Numerical Methods in Engineering, Vol. 112, No. 12, p. 1801–1827 (2017).
- Drohmann and C. "The ROMES method for statistical modeling of reduced-order-model error," SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, p.116–145 (2015).