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High-fidelity simulation

+Indispensable across science and engineering

- High fidelity: extreme-scale nonlinear dynamical system models

Turbulent reacting flows Antarctic ice sheet modeling Magnetohydrodynamics
courtesy J. Chen, Sandia courtesy R. Tuminaro, Sandia courtesy J. Shadid, Sandia

Many-query problems

e uncertainty propagation ® multi-objective optimization

® Bayesian inference ® stochastic optimization
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High-fidelity simulation: captive carry




High-fidelity simulation: captive carry

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

Many-query problems

o explore flight e quantify effects of ® robust design of
envelope uncertainties on store load store and cavity
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Approach: exploit simulation data

dx
dt
Many-query problem: solve ODE for p € Dqyery

ODE: =f(x;t, ), x(0,) =xo(pt), te€]0, Thna], @D

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for g € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Diraining
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Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Structure preservation: preserves important physical properties
4. Reliability: guaranteed satisfaction of any error tolerance (fail safe)

5. Certification: quantifies ROM-induced epistemic uncertainty
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Model reduction: previous state of the art

Nonlinear dynamical systems: ineffective

* Proper orthogonal decomposition (POD)—Galerkin sirovich, 19871

- Inaccurate, unreliable: often unstable

- Not certified: error bounds grow exponentially in time

- Expensive: projection insufficient for speedup

- Structure not preserved: dynamical-system properties ignored
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» Jow cost: sample mesh [c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

> StrUCture preservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
» reliability: adaptivity [c, 201s]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]

Collaborators:
» Matthew Barone (Sandia) * Charbel Farhat (Stanford University)
» Harbir Antil (GMU) » Julien Cortial (Stanford University)
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Training simulations: state tensor

dx
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining

number of

time steps T
+—>

A

number of
state variables N

<
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Training simulations: state tensor
dx

. — =f(xt,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining
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Tensor decomposition

dx
. =f(x t,
ODE ” (x; t, )

. Training: Solve ODE for p € Dyining and collect simulation data
. Machine learning: |dentify structure in data
. Reduction: Reduce the cost of solving ODE for pt € Dquery \ Dtraining

L A

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

|
c
M
<
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Tensor decomposition

dx
. — =f(x:t,
ODE ” (x; t, )

. Training: Solve ODE for p € Dypaining and collect simulation data
2. Machine learning: |dentify structure in data
. Reduction: Reduce the cost of solving ODE for pt € Dquery \ Dtraining

—

W

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

® columns are principal components of the spatial simulation data

How to integrate these data with the computational model?
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Previous state of the art: POD-Galerkin

d .
ODE: d—)t(:f(x;t,u) D .

3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

1. Reduce the number of unknowns 2. Reduce the number of equations

>”<t)_<bx(t) f(PX;t, 1) — ¢@
Galerkin ODE: E =o' f(dx;t, 1) |D ,'. ¢ 30
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Captive carry

o
oooooooo
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*» Unsteady Navier—Stokes »Re=6.3x10® *» Mo

=0.6
Spatial discretization Temporal discretization
» 2nd-order finite volume » 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 1073
» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances
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High-tidelity model solution
vorticity field

-— 50 m

|: =
\b

pressure field
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Principal components
x(t) ~ ® x(1)
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Galerkin performance

2.8
- high-fidelity:
_ dim 1.2x105
a —— Galerkin: dim 204
g_ 2 4 a2 LA NARA NR NA - Galerkin: dim 368
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time
- Galerkin projection fails regardless of basis dimension
Can we construct a better projection?

Advances in nonlinear model reduction Kevin Carlberg



Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dX
Cb——d)(bT f(Px; t)

f(x; t)
| 1 1™

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

dX
() X(x t) = argmin ||r(v,x; t)|>
dt vErange(®)
r(v,x;t) :=v — f(x; t)
OAE Galerkin OAE

r"(x")=0, n=1,..., T

k k
r"(x) := apx — AtBof(x; t") + Z ajx" — Atz Bf(x"; t")
j=1 j=1

- Time-discrete Galerkin solution: not generally optimal in any sense
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Residual minimization and time discretization

( ) ( : )
ODE | Galerkin ODE
dx residual >l dx
— f(x t) minimization —(X t) = argmlg [r(v, x; £)]]2
L d p k vErange(®) J
time time
discretization discretization
) .
( 1SPGOAE ) ... [ OAE " Galerkin OAE
X" = 2rgml(r;))\|Ar"(")H2 “minimization| ¥"(x") =0 & "r"($x") = 0
vErange
k n:]_,___,T J Ln:].,...,TJ L n:].,...,T J

[C., Bou-Mosleh, Farhat, 2011]
Ox" = argmin ||Ar'(v)|. & (M " (dx") =0
vErange(®) - ‘

W (") = AT Aol — Atﬁoaf( dx"; t))d

Least-squares Petrov—Galerkin (LSPG) projection
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Discrete-time error bound

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward differentiation formula (BDF) time integrator is used,

4. LSPG employs A =1, then

k
A ]' N ]' — 5 —E
Ix" — ®xgl2 < - fIrg(®Xg)ll2+ > laell|x"" — &%
1 T
A : A —/ sn—~¢
" — O%{spglls < - min [elspg(@9)l2 > o[ @l
/=1

+ LSPG sequentially minimizes the error bound
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L SPG performance

2.8
—_ high-fidelity:
] i | dim 1.2x106
a | —— Galerkin: dim 204
g_ 2 4 _- ------- Galerkin: dim 368
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iy ¥ :
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+ LSPG is far more accurate than Galerkin
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» low cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013*]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' Stl’UCtUl’e pl’eservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» reliability: adaptivity [c., 2015)

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Wall-time problem

2.8
- high-fidelity:
] ‘ dim 1.2x106
a | —— Galerkin: dim 204
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time
» High-fidelity simulation: 1 hour, 48 cores Why does this occur?
» Fastest LSPG simulation: 1.3 hours, 48 cores Can we fix it?
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize r"(d V)|

i

Can we select A to make this less expensive?
1. Training: collect residual tensor RY* while solving ODE for pt € Diraining
2. Machine learning: compute residual PCA®, and sampling matrix P
3. Reduction: compute regressmn appromma’non r" ~ 1" = & (Pd,)"Pr”

value

Index
miniAmize r"
\Y}
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize A r"((d V)|

W

Can we select A to make this less expensive?

1. Training: collect residual tensor RY* while solving ODE for pt € Diraining

2. Machine learning: compute residual PCA®, and sampling matrix P

3. Reduction: compute regression approximation r" ~ " = ® (P®,)" Pr"
R — ],

_rn

« Pr”

~Nn

r

value

minimize|| (P®,)"P r"(

\'}

iz + Only a few elements
) of r" must be computed
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Sa m p ‘ e m eSh [C., Farhat, Cortial, Amsallem, 2013]

minimize||(P®,) " Pr"(®v)||,
G N

sample
mesh .
+ HPC on a laptop
vorticity field
LSPG ROM with =
A=(P®,)"P | |

32 min, 2 cores

e Y .

pressure_fom

26
23
20
17
14

+229x savings in core—hours
+< 1% error in time-averaged drag
Implemented in three computational-mechanics codes at Sandia

high-fidelity
5 hours, 48 cores
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Ah med bOdy [Ahmed, Ramm, Faitin, 1984]
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» Unsteady Navier—Stokes »*Re=4.3x 106 » M..=0.175

Spatial discretization Temporal discretization

» 2nd-order finite volume » 2nd-order BDF

* DES turbulence model » Time step At =8 x 10™s
» 1.7 x 10" degrees of freedom » 1.3 x 10° time instances
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
LSPG ROM with A = (P®,)"P high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

+438x savings in core—hours
+Largest nonlinear dynamical system on which ROM has ever had success
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' Sl’l’UCtUl’e preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» reliability: adaptivity (c, 2015

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Advances in nonlinear model reduction Kevin Carlberg 26



Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Samp|e mESh [C., Farhat, Cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

» structure preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
» reliability: adaptivity [c., 2015)

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Samp|e mESh [C., Farhat, Cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' Stl’UCtUl’e pl’eservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
> reliability: adaptivity (c, 2015]

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2018]

Collaborators:
*» Martin Drohmann (formerly Sandia) * Matthias Morzfeld (U of Arizona)
» Wayne Uy (Cornell University) » Brian Freno (Sandia)

* Fei Lu (Johns Hopkins University)
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Surrogate modeling in UQ

inputs p — [ high-fidelity modelj — outputs quyry

* high-fidelity-model (HFM) noise model: q,,.... = 9uru(pt) + €
* measurement noise ¢ has probability distribution 7_(-)

* HFM likelihood: mHEm (qmeas | u’) — 7T&?(qmeas _ qHFM(“’))

inputs p — [ surrogate model ] — outputs qq,,.,

* surrogate noise model: q,,..c = Ao, (1) + €

} Surrogate likelihood: 7TSU“’(qmeas | “’) — 7T&‘(qmeas o qsurr(u’))
- inconsistent with HFM noise model

Advances in nonlinear model reduction Kevin Carlberg



Surrogate modeling in UQ
Auem () = Aeyre (1) + 0(12)

* HFM noise model: q,.... = quey(pt) + €
= Qg (1) +0(p) + €
* HFM likelihood: 7THFM(qmeas | ”’) — 7T“S(qmeas — qHFM(“’))
— 7-‘-E(qmeas o qsurr(“’) o 5(“’))

+ equivalent to HFM formulation
+ not practical: the (deterministic) error () is generally unknown

How can we account for the error 6(u) in a manner that is
consistent and practical?
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Surrogate modeling in UQ
Auem () = Aeyre (1) + 0(12)

Approach: statistical model () for the error that models its uncertainty

EIHFM(“’) — qsurr(“’) + 5(“’)
N—_—— N—— N——

stochastic deterministic stochastic

» statistical HFM noise model: Quess = Guem(pt) + €

= Qg (1) + 0(p) + €

* stochastic HFM likelihood: Tz (Ameas | ) = 7o 5 (Ameas — Dsurr (12))

+ consistent with HFM noise model
+ practical if the statistical error model ¢ is computable

Desired properties in statistical error model ()
1. cheaply computable: similar cost to evaluating the surrogate
2. low variance: introduces little epistemic uncertainty
3. generalizable: correctly models the error

How can we construct a statistical error model for reduced-order models?
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Approximate-solution surrogate models
High-fidelity model

» governing equations: r(x(u); ) =0

» quantity of interest: gurm(p) = g(x(u))

Approximate-solution surrogate model
» approximate solution: x(u) ~ x(u)

» quantity of interest: qgsu.(pt) := q(x(p))

Types of approximate solutions
» Reduced-order model:
Wir(dbx; pn) =0 %=>x
» Low-fidelity model.
rr(xer ) =0, X = p(xLr)
» Inexact solution: compute x'*), k =1,..., K such that

[r(x"0; ) = 0]z <, 5 = x50

What methods exist for quantifying the error o(1t) == gurm(pt) — Gsurr(pt)?

Advances in nonlinear model reduction Kevin Carlberg



1) Error indicators: residual norm
» HFM governing equations: r(x(w); i) =0 (1)

» Approximate solution: X(p) ~ x(p) (2)

» Substitute (2) into the residual of (1) and take the norm:
[r(%; p)]f2

» Applications: termination criterion, greedy methods, trust regions
[Bui-Thanh et al., 2008; Hine and Kunkel, 2012; Wu and Hetmaniuk, 2015; Zahr, 2016]

+ Informative: zero for high-fidelity model
- Deterministic: not a statistical error model
- Low quality: relationship to error depends on conditioning
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1) Error indicators: dual-weighted residual
» Approximate HFM quantity of interest to first order

-y 0q,. N N
a(x) = (%) + 5L (%) (x = %) + O(l|x — %) (1)
» Approximate HFM residual to first order
. or , . . .
0 =r(x) = r(%) + o~ (%)(x — %) + O(}x — X||°)

» Solve for the error 9y
X — X = — &(i)]‘lr(iH O(fx — x|1°) (2)

- Substitute (2) in (1): 4x) — () = yr(%) + O(x — %IP)
)Ty = 29T

» Applications: adaptive mesh refinement
[Babuska and Miller, 1984; Becker and Rannacher, 1996; Rannacher, 1999; Venditti and Darmofal, 2000; Fidkowski, 2007]

+ Accurate: second-order-accurate approximation
- Deterministic: not a statistical error model
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2) Rigorous a posteriori error bound

If the following conditions hold:
1. r(-; p) is inf-sup stable, i.e., for all 4 € D, there exists a(u) > 0 s.t.

Ir(ze; ) — r(z2i )2 > a(p)l|lz1 — 22/, Vz1,22 € RY

2. q(-) is Lipschitz continuous, i.e., there exits 5 > 0 such that
9(z1) — q(22)| < Bl|z1 — 22

then the quantity-of-interest error can be bounded as

>, Vz1,Zr € RN

a(x) — a()] < 2 (s )

> Applications: reduced-order models
[Rathinam and Petzold, 2003; Grepl and Patera, 2005; Antoulas, 2005; Hinze and Volkwein, 2005; C. et al., 2017]

+ Certification: guaranteed bound

- Lack sharpness: orders-of-magnitude overestimation

- Difficult to implement: require bounds for inf—sup/Lipschitz constants
- Deterministic: not a statistical error model
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3) Model-discrepancy approach
O(p) ~ N(p(p); o ()

—
o
T

| GHFM
e (surr

° 0= AHFM — Gsurr

(6)]
T

quantity of interest

1
(&)

parameter [

> Applications:
» Model calibration [Kennedy, O’Hagan, 2001; Higdon et al., 2003; Higdon et al., 2004]
> I\/Iultiﬁdelity optimization [Gano et al., 2005; Huang et al., 2006; March, Willcox, 2012; Ng, Eldred, 2012]

+ General: applicable to any surrogate model

+ Statistical: interpretable as a statistical error model

+ Epistemic uncertainty quantified: through variance

- Poorly informative inputs: parameters i weakly related to the error

- Poor scalability: difficult in high-dimensional parameter spaces

- Thus, can introduce large epistemic uncertainty: large variance
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Obijective

Goal: combine the strengths of

1.error indicators,

2.rigorous a posteriori error bounds, and
3. the model-discrepancy approach

A posteriori: use residual-based quantities computed by the surrogate
» strength of #1 and #2

+ Informative inputs: quantities are strongly related to the error

+ Thus, can lead to lower epistemic uncertainty: lower variance

Error modeling: statistical model for the error

> strength of #3

+ Statistical: interpretable as a statistical error model
+ Epistemic uncertainty quantified: through variance

Advances in nonlinear model reduction Kevin Carlberg



Main idea

* Observation: residual-based quantities are informative of the error
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Residual r/error bound

* So, these are informative features: can predict the error with low variance

Idea: Apply machine learning regression to generate a mapping from
residual-based quantities to a random variable for the error

+ Can produce lower-variance models than the model-discrepancy approach

Machine-learning error models
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Machine-learning error models: formulation

o(pm) = flp(p)) +e(p(p))

deterministic stochastic

features: p(u) € RV»

regression function: f(p) = E[0 | p]

noise: €(p)

Note: model-discrepancy approach uses p = p

v v v v

~ ~

o(p) = fp(p)) +e(p(p))

deterministic stochastic

regression-function model: f(~ f)
noise model: é(= ¢)

v

v

» Desired properties in error model §
1. cheaply computable: features p(p) are inexpensive to compute
2. low variance: noise model €(p) has low variance
3. generalizable: empirical distributions of ¢ and ¢ ‘close’ on test data
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Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for t € Diraining
2. Machine learning: Construct regression model

[UAS unery \ Dtraining

D o
0 = AHFM — surr P

high-fidelity surrogate
model models
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Training and machine learning

—

. Training: Solve high-fidelity and multiple surrogates for pt € D:raining
. Machine learning: Construct regression model

[UAS unery \ Dtraining

N

D -
o o
é??éu!'"!ia‘!i 5 = guEM — Gsurr 0
il I

high-fidelity surrogate
model models
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Training and machine learning

—

. Training: Solve high-fidelity and multiple surrogates for p € Diraining
. Machine learning: Construct regression model
3. Reduction: predict surrogate-model error for pt € Dquery \ Dtraining

N

D o
g 0 = GQHFM — Gsurr P
g‘igg i I
A

high-fidelity surrogate
model models
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Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for t € Diraining
2. Machine learning: Construct regression model

[UAS unery \ Dtraining
D O
0 = AHFM — surr P

high-fidelity surrogate
model models
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Training and machine learning

—

. Training: Solve high-fidelity and multiple surrogates for p € Diraining
. Machine learning: Construct regression model
3. Reduction: predict surrogate-model error for pt € Dquery \ Dtraining

D" e

N

0 = AHFM — Gsurr

high-fidelity surrogate
model models
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Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for u €
2. Machine learning: Construct regression model

[UAS unery \ Dtraining
D" -

0 = AHFM — surr P

high-fidelity surrogate
model models

*» randomly divide data into (1) training data and (2) testing data
» construct regression-function model f via cross validation on training data
» construct noise model € from sample variance on test data
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Reduction

[UAS Dtraining
2. Machine learning: Construct regression model
3. Reduction: predict surrogate-model error for 1t € Dquery \ Diraining

Dot it

inputs p — [ surrogate model j — outputs QGsurr

'
features p
'
i regression model \_> machine learning
(k) = flp(w) +&(p(w)]  error model &

(" )

aHFM(N) — qsurr(ﬂf) -+ S(M)
SN——r-~ N—— SN~

g stochastic deterministic stochasticJ
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Error-model construction
() = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
= High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Error-model construction
() = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
=» High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Feature: dual-weighted residual prohmann, c., 2015

a(x) — a(%) = y¥(x) + O(x ~ %)
O )Ty =~ 2957

» Want to avoid HFM-scale solves, so approximate dual as
yxy= (byy

and construct a ROM for the dual

or
(by ! ax (X) T(byy —

» One feature: g(x) — g(%) ~ '@, "r(%)
» can control feature quality via dimension of ®,

y 8x (X)

» Regression model: Gaussian process [rasmussen, williams, 2006]
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Application: Bayesian inference

Ac(x; p)u(x; ) =0 in Q x(p)=0o0nTp
Ve(p)x(p) - n=0on Iy, Ve(p)x(p)-n=1on Iy,

v

Inputs 1 € [0.1, 10]° define diffusivity in ¢ in subdomains

Outputs g are 24 measured temperatures

ROM constructed via RB-Greedy (patera and Rozza, 2006]

Torior(14) : Gaussian with variance 0.1

e ~N(0,1x1073)

Posterior sampling: 1 x 10> samples w/ implicit sampling (et at, 2013;

v

v

v

v

v
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Machine learning error models
0i(1) ~ N (Bpi(), en + az|pi()|*)

low )
quality *
high
variance
cheap
0.4
. —25
high 5
quality —
low ? 0}
variance —
costly E R
el rank(®;) = 22 s rank(®o) =7
0 | 1 2

0 004 008 012
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Wall-time performance

10° F
104;‘

10° |

simulation time

ROM+ ROM+
igh-var low-var

» ROM:
+cheapest
- inconsistent formulation
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Wall-time performance

10° F

104;‘

simulation time

10° |

10°
HFM ROM

igh-var low-var
» ROM:

+cheapest

- inconsistent formulation
» ROM + error models:

+cheaper than HFM

- more expensive than ROM

+consistent formulation
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Posteriors: ROM

SUFI’

post(u’ ‘ qmeas)

2 - {rue
‘ ﬁ == prior
0
0 5 6.4 66 6.8 7 7.2
10 — HFM (I'l' | q )
115 post meas
v 1.1
8 1.05 o 5 surr ( ‘ )
c§ 1 l == T host M| Qmeas
-~ 0.95 0 A
6.2 6.4 6.6 6.8 0 5 10 15
=
2\/ 58
+ 56
o y
< 5.2

6.2 6.4 6.6 6.8 095 1 1.056 1.11.15

o

6.2 6.4 6.6 6.8 095 1 1.056 1.1 1.15 52 54 56 68

+ HFM posterior: close to true parameters
- ROM posterior: far from prior and true parameters
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Posteriors: ROM + high-variance error model

HFM( | )
post H | Ameas
3
2 - {rue
1 [ ]
== prior
0
O 5 10 . . . . . a HFM
15 10 == Thost (l"’ ‘ qmeas)
g 1.1 ' .
) 1.05 5 HFM( | )
S 1 — post K | Qmeas
o 0.95 .
_3. 62 6.4 66 68
~ 58
= 56
o y
< 5.2
62 6.4 66 68 095 1 1.05 1.11.15
4
4
2
38
36 .
62 6.4 66 68 095 1 1.05 1.11.15 52 54 56 58 0 2 4 6

+ ROM + high-variance error model posterior: close to prior
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Posteriors: ROM + low-variance error model

HFM( | )
post l"’ qmeas
5.8
- trye
5.6
54 .
52 == prior
0 5 10 6.2 6.4 6.6 6.8 6.2 6.4 6.6 6.8 . . . . HFM
115 — post (IJ’ ‘ qmeas)
VY .
g 1.1
qE) 1.05 HFM (u ‘ q
1 — ost meas
o 0.95 p
i 6.2 6.4 6.6 6.8
N
=
LL
o)
IkQ-
6.2 6.4 6.6 6.8 095 1 1.05 1.11.15 4 6 8 10 52 54 56 58
4
4
2
3.8
3.6 0
6.2 6.4 6.6 6.8 095 1 1.05 1.11.15 52 54 56 58 0 2 4 6

+ ROM + low-variance error model posterior: close to HFM posterior
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Error-model construction
() = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
=» High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Feature engineering (freno, ., 2018]

Idea: Use traditional error quantification as inspiration for features
1. Error indicators:

» residual norm: |[r(X; w)||2

 dual-weighted residual: g(x) — q(X) =y r(x) + O(||x — [*)
2. Rigorous a posteriori error bound: |q(x) — g(%)] < —[Ir(%; p)]l2

3. Model discrepancy: 6(u) ~ N (u(p); o2 (w))

Proposed features: * residual samples Pr(®x; 1)

» parameters K + moderate number, cheap
» low quality, cheap - low quality
» used by model discrepancy » residual PCA #:= @ r(®%; 1)

» residual norm |[r(®X; w)||2 + moderate number, high-quality
- small number, low quality, costly - costly

* residual r(®x; ) * gappy PCA ¢, := (P®,)"Pr(®x; )

- large number, low quality, costly + moderate number, high-quality
+ cheap
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Application: Predictive capability assessment project

Deformation
Magnitude [m]
0.011

0.010

0.009

0.008
0.007

0.006

0.005
0.004

0.003

0.002

R 77
N e e,
eSSt s sses,
s s
| AL

S LAl
<] S 0.001

0.000

v

high-fidelity model dimension: 2.8 x 10°

reduced-order model dimensions: 1,... 5

inputs p: elastic modulus, Poisson ratio, applied pressure
quantities of interest: y-displacement at A, radial displacement at B
training data: 150 training examples, 150 testing examples

v

v

v

v
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Application: Predictive capability assessment project
radial displacement at B

y-displacement at A
logo(1 — RZ)

(7 OLS: Linear
o
g OLS: Quadratic
o
Q SVR: Linear
E SVR: RBF
C
Q RF
7
%)
QU k-NN
N
8 ANN
g
2 7 3 2 3 S = 5 0w %
TR — — S S S S -
= = 37 9 = = S & i
sy = = L L 5 7
=2 - - - - = &=
T
¥y = ~ g A
— 2 = i =
features
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|og10(1 — RZ)

(15 [|x2]

10)

[ Pr] (q

)

o o o o o <l S
— S S =) o -

I — — o (@) X

> I I i i —
= > > I I
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= i =2

Kevin Carlberg



Application: Predictive capability assessment project

regression methods

y-displacement at A radial displacement at B
2 2
0g1o(1l — R7) log1o(1 — R%)
OLS: Linear
OLS: Quadratic
SVR: Linear i
SVR: RBF
-3
RF
k-NN 4
ANN
—5
£ 2 22 38 g8 %% 225328588 T\
= = . . T TS g 32 = = . oL 7 7T 2 2 =2
= = &L & 0T T = = L & T T
2 x == S 2 L5 = = &= =
< = e — < . —_— —
ERE & 5§ E 7
— =2 = 5§ = — =2 = 5§ =
features features

- parameters (model-discrepancy approach): large variance
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Application: Predictive capability assessment project

regression methods

y-displacement at A

2
Oglo(l - R )
OLS: Linear
OLS: Quadratic
SVR: Linear .
SVR: RBF
RF
k-NN
ANN
%‘ o o o 2 o o @«
S|E s LU g 7 S
NIV
A -A = = e
2 . oy A~ %
= = i =
features

radial displacement at B

2
|0g10(1 — R )
-2
-3
I4
-5
S 2 g g g 5§ =\
I I — — ) @) 3
S o I I i b
- = S S I I
— — ~ ~— [w)) ey
goS T o=w =
. <l T oD
I =2 " g g
— 2 = El 2
features

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
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Application: Predictive capability assessment project

regression methods

y-displacement at A radial displacement at B
2 2
0gyo(l — R7) log1o(1 — R%)
OLS: Linear
OLS: Quadratic
SVR: Linear 9
SVR: RBF
-3
RF
k-NN —4
ANN
—5
= = o = o o o ol|l+=w|= = = o o oo o o o|lw|=
=B — — (@) (@) (@) (@) e E=N — — (e (@] (-} (@] e
DT - - A D - -
£ ==L 11 £ 2=t 1 I\
< = e — < . —_— —
ERE s £ % fE T
features features

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
» PCA of the residual: lowest variance overall but costly
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Application: Predictive capability assessment project
radial displacement at B

regression methods

y-displacement at A
0g1g(1 — R?)

OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

RF

N — ~ ~— ~ ~— ~ ~— rem
== = o o o o o o <=
- o — — o (@) (@) (@) .
= =1 = S S 1
. > > | |
512 2 = = 1L
— — ~ ~ =y (=
;_. 20 —_— —_— N— N—
ol <= — 00 —_— —_—
< Q—I - - <$.|b0
5 2 Loy & 7
[l i .~ i
\ f‘ =

k-NN
ANN

([P

2
logo(1 — R?)
_ 10
—2
-3
i4
-9
ol S o o o o | w 2
e — — o (@) (@) (@] o~
= I I — — ) @) 3
- =S I 1 ‘ﬂ‘ ‘ﬂ‘
2w = = = = =
<t o o0 - -
s &£ & [ EF
it 3. L~ .~ i
= 3 =
N 2 =)
features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
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Application: Predictive capability assessment project

y-displacement at radial displacement at B
2 2
0gyo(l — R7) log1o(1 — R%)
0
(7, OLS: Linear
S
Q OLS: Quadratic —1
L
-
Q SVR: Linear 9
S SVR: RBF )
- C | 3
Q RF N
(V)
V)
Q k-NN 4
L
Q) (Cany )
LN -5
% o o o o o o @@« S8 = = = o T o o o «w 2
= = 7 7 S £ g g 3 = = 57 57 2 £ & § g
= L L7y = =2 = = L L 3y 7 = =5 2
iZ D = = & o= i 25 2= & &
A < e ) — - o, < = " w0 — —
. .- ol ] ~ 2 . . - ol <t = 2
U R, i 2 3 i % 3
features features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
+neural networks and SVR: RBF yield lowest-variance models
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Application: Predictive capability assessment project

4 .
9 | 1 — Exact
- [r(®X; )|
§ OF 7 SVR: RBF
A 2__
S| P | r2=0.94712
S Y
- ¢ v
S _y / . ANN
5 / r2=0.96851
IS R
g 0 e 1 ; 1] (ne=10)
2 e e ANN
-8r A 1 r2=().99944
_10 1 1 1 1 1 1
~10 -8 —6 4 —9 0 9 4

Predicted error, 0,, [x107]
» Traditional features p and ||r(®x; p)||>:
- high noise variance
- expensive for |[r(®X; 1)||2 : compute entire residual

* Proposed features [u; fgl:
+|low noise variance
+extremely cheap: only compute 10 elements of the residual

Advances in nonlinear model reduction Kevin Carlberg



Summary

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» Jow cost: sample mesh [c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

> StrUCture preservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
» reliability: adaptivity [c, 201s]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Questions?

LSPG reduced-order model:

» C, Barone, and Antil. “Galerkin v. least-squares Petrov—Galerkin projection in
nonlinear model reduction,” Journal of Computational Physics, Vol. 330, p. 693—-
734 (2017).

» C, Farhat, Cortial, and Amsallem. “The GNAT method for nonlinear model
reduction: Effective implementation and application to computational fluid
dynamics and turbulent flows,” Journal of Computational Physics, Vol. 242, p. 623—-
647 (2013).

» C, Bou-Mosleh, and Farhat. “Efficient non-linear model reduction via a least-
squares Petrov—Galerkin projection and compressive tensor approximations,”

International Journal for Numerical Methods in Engineering, Vol. 86, No. 2, p. 155—
181 (2011).

Machine-learning error models:

» Freno, C. “Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations,” arXiv e-Print, 1808.02097 (2018).

» Trehan, C, and Durlofsky. “Error modeling for surrogates of dynamical systems using
machine learning,” International Journal for Numerical Methods in Engineering, Vol.
112, No. 12, p. 1801-1827 (2017).

» Drohmann and C. “The ROMES method for statistical modeling of reduced-order-
model error,” SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, p.116—
145 (2015).
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