Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction

Youngsoo Choi, Kevin Carlberg

Sandia National Laboratories Livermore, California

MoRePaS IV, Nantes, France April 12, 2018

Work was performed while Youngsoo Choi was employed in the Extreme-scale Data Science and Analytics Department, Sandia National Laboratories, Livermore, CA 94550. Current affiliation: Lawrence Livermore National Laboratory.

Motivation

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu); \quad \mathbf{x}(0, \mu) = \mathbf{x}^{0}(\mu), \quad t \in [0, T_{\text{final}}], \quad \mu \in \mathcal{D}$$

ODE: $\mathbf{r}^{n}(\mathbf{x}^{n}, \dots, \mathbf{x}^{n-k}; \mu) = \mathbf{0}, \quad n = 1, \dots, T, \quad \mu \in \mathcal{D}$
number of
time steps T

Motivation

Most ROMs for nonlinear dynamical systems use

spatial simulation data to reduce the spatial dimension and complexity

Motivation

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu); \quad \mathbf{x}(0, \mu) = \mathbf{x}^{0}(\mu), \quad t \in [0, T_{\text{final}}], \quad \mu \in \mathcal{D}$$

ODE: $\mathbf{r}^{n}(\mathbf{x}^{n}, \dots, \mathbf{x}^{n-k}; \mu) = \mathbf{0}, \quad n = 1, \dots, T, \quad \mu \in \mathcal{D}$
number of
time steps T

Most ROMs for nonlinear dynamical systems use spatial simulation data to reduce the spatial dimension and complexity

Goal: use temporal simulation data to reduce the temporal dimension and complexity

Offline step 1: data collection

ΟΔΕ:
$$\mathbf{r}^{n}(\mathbf{x}^{n},...,\mathbf{x}^{n-k};\boldsymbol{\mu}) = \mathbf{0}, \quad n = 1,..., T$$

Offline step 1: data collection

ΟΔΕ:
$$\mathbf{r}^{n}(\mathbf{x}^{n},...,\mathbf{x}^{n-k};\boldsymbol{\mu}) = \mathbf{0}, \quad n = 1,..., T$$

$$\mathcal{X} =$$

Offline step 2: Tensor decomposition (POD)

ΟΔΕ:
$$\mathbf{r}^{n}(\mathbf{x}^{n},...,\mathbf{x}^{n-k};\boldsymbol{\mu}) = \mathbf{0}, \quad n = 1,..., T$$

Compute dominant left singular vectors of mode-1 unfolding

Offline step 2: Tensor decomposition (POD)

ΟΔΕ:
$$\mathbf{r}^{n}(\mathbf{x}^{n},...,\mathbf{x}^{n-k};\boldsymbol{\mu}) = \mathbf{0}, \quad n = 1,..., T$$

Compute dominant left singular vectors of mode-1 unfolding

 Φ columns are principal components of the spatial simulation data

Online: LSPG projection [C., Bou-Mosleh, Farhat, 2011]

O
$$\Delta E$$
: $\mathbf{r}^n(\mathbf{x}^n,\ldots,\mathbf{x}^{n-k};\boldsymbol{\mu}) = \mathbf{0}, \quad n = 1,\ldots,T \mid \mathcal{D}^{\bullet}$

1. Reduce number of spatial unknowns 2. Minimize O Δ E residual

$$\text{-SPG O\Delta E: } \hat{\mathbf{x}}^n = \arg\min_{\hat{\mathbf{v}}} \left\| \mathbf{Ar}^n(\mathbf{x}^0 + \mathbf{\Phi}\hat{\mathbf{v}}, \tilde{\mathbf{x}}^{n-1}, \dots, \tilde{\mathbf{x}}^{n-k}; \boldsymbol{\mu}) \right\|_2^2 \quad \boxed{\mathcal{D}}_{\hat{\mathbf{v}}} \mathbf{D}_{\hat{\mathbf{v}}} \mathbf{D}_{\hat{\mathbf{v}}}$$

Ahmed body [Ahmed, Ramm, Faitin, 1984]

• Unsteady Navier–Stokes • Re = 4.3×10^6 • M_{∞} = 0.175

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5} {
 m s}$
- 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

GNAT ROM ($\mathbf{A} = (\mathbf{P} \mathbf{\Phi}_r)^+ \mathbf{P}$) 4 hours, 4 cores spatial dim: 283 temporal dim: 1.3 x 10³ high-fidelity model 13 hours, 512 cores spatial dim: 1.7 x 10⁷ temporal dim: 1.3 x 10³

+ 438X computational-cost reduction
+ 60,500X spatial-dimension reduction
- Zero temporal-dimension reduction

B61 captive carry

• Unsteady Navier–Stokes • Re = 6.3×10^6 • M_{\infty} = 0.6

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

Turbulent-cavity results [C., Barone, Antil, 2017]

 Vorticity_rom
 \$00 \ \$75 \ \$25 \ \$25 \ \$25 \ \$00 \ \$25 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$25 \ \$00 \ \$26 \ \$00 \ \$26 \

vorticity field

pressure field

GNAT ROM 32 min, 2 cores spatial dim: 179 temporal dim: 458 high-fidelity 5 hours, 48 cores spatial dim: 1.2M temporal dim: 3,700

- + 229X computational-cost reduction
- + 6,500X spatial-dimension reduction
- 8X temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?

Reducing temporal complexity: existing work

Larger time steps with ROM

[Krysl et al., 2001; Lucia et al., 2004; Taylor et al., 2010; C. et al., 2017]

- Developed for explicit and implicit integrators
- Limited reduction of time dimension: <10X reductions typical

Forecasting using gappy POD in time

- Accurate Newton-solver initial guess [C., Ray, van Bloemen Waanders, 2015]
- Coarse propagator in time-parallel setting [C., Brencher, Haasdonk, Barth, 2016]
- + No error incurred and wall-time improvements observed
- No reduction of time dimension

Space-time ROMs

- Reduced basis [Urban, Patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
- POD–Galerkin [Volkwein, Weiland, 2006; Baumann, Benner, Heiland, 2016]
- ODE-residual minimization [Constantine, Wang, 2012]
- + Reduction of time dimension
- + Linear time-growth of error bounds[^]
- Requires space—time finite element discretization[^]
- No hyper-reduction*
- Only one space—time basis vector per training simulation⁺

^ Only reduced-basis methods * Excep

* Except [Constantine, Wang, 2012]

+ Except [Baumann, Benner, Heiland, 2016]

Preserve attractive properties of existing space-time ROMs

- + Reduce both space and time dimensions
- + Slow time-growth of error bound

Overcome shortcomings of existing space-time ROMs

- + Applicability to general nonlinear dynamical systems
- + Hyper-reduction to reduce complexity of nonlinearities
- + Extract multiple space-time basis vectors from each training simulation

Space-time least-squares Petrov-Galerkin (ST-LSPG) projection

Reference: Choi and C. Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction. *arXiv e-print*, (1703.04560), 2017.

Spatial v. spatiotemporal trial subspaces $\begin{array}{l} \textbf{Full-order-model trial subspace} \\ \left[\textbf{x}^1 \ \cdots \ \textbf{x}^T \right] \in \mathbb{R}^N \otimes \mathbb{R}^T \end{array}$ $\begin{bmatrix} \mathbf{\hat{x}}^1 & \cdots & \mathbf{\hat{x}}^T \end{bmatrix} = \mathbf{\Phi} \begin{bmatrix} \mathbf{\hat{x}}^1 & \cdots & \mathbf{\hat{x}}^T \end{bmatrix} \in \mathcal{S} \otimes \mathbb{R}^T \subseteq \mathbb{R}^N \otimes \mathbb{R}^T$ + Spatial dimension reduced Temporal dimension large Space-time trial subspace

How to compute space-time bases π_i ?

Space-time basis computation

Tensor slices

[Urban, Patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014; Volkwein, Weiland, 2006; Constantine, Wang, 2012]

- + General space-time structure
- Only one basis vector per training simulation
- NT storage per basis vector

Space-time basis computation

Truncated high-order SVD (T-HOSVD) [Baumann, Benner, Heiland, 2016]

Compute dominant left singular vectors of mode-2 unfolding

 Ξ columns are principal components of the **temporal** simulation data

$$\pi_{\mathcal{J}(i,j)} = \phi_i \otimes \xi_j$$

- + Multiple basis vectors per training simulation
- + N+T storage per basis vector
- Enforces Kronecker–product structure
- Same temporal modes for each spatial mode

Space-time least-squares Petrov-Galerkin projection

Space-time basis computation

Sequentially truncated high-order SVD (ST-HOSVD)

[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2016]

 Ξ_i columns are principal components of the **temporal** simulation data of ϕ_i

- + Multiple basis vectors per training simulation
- + N+T storage per basis vector
- + Tailored temporal modes for each spatial mode
- Enforces Kronecker-product structure

How to project governing equations?

Space-time least-squares Petrov-Galerkin projection

- space-time sampling $\overline{\mathbf{P}}$ via sequential greedy

- + Residual computed at a few spatial degrees of freedom
- Residual computed at all time instances

+ Residual computed at a few space—time degrees of freedom

Error bound

LSPG

- Sequential solves: sequential accumulation of time-local errors

$$\|\mathbf{x}^n - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^n\|_2 \leq rac{\gamma_1(\gamma_2)^n \exp(\gamma_3 t^n)}{\gamma_4 + \gamma_5 \Delta t}$$

$$\max_{\substack{j \in \{1,...,n\} \quad \hat{\mathbf{v}}}} \min_{\mathbf{v}} \|\mathbf{r}_{\mathsf{LSPG}}^{j}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}$$

worst best time-local approximation residual

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

ST-LSPG

+ Single solve: no sequential error accumulation

$$\|\mathbf{x}^n - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{ST-LSPG}}^n\|_2 \leq \sqrt{T}(1+\Lambda) \min_{\mathbf{w} \in \mathscr{ST}_j \in \{1,...,T\}} \|\mathbf{x}^n - \mathbf{w}^n\|_2$$

best space-time approximation error

+ Stability constant: polynomial growth in time with degree 3/2
+ bounded by best space-time approximation error

Quasi-1D Euler equation

 $\frac{\partial \mathbf{w}}{\partial t} + \frac{1}{A} \frac{\partial (\mathbf{f}(\mathbf{w})A)}{\partial x} = \mathbf{q}(\mathbf{w}), \quad \forall x \in [0, 1] \text{ m}, \quad \forall t \in [0, T_{\text{final}} = 0.6 \text{ sec}]$

• Shock placed at x = 0.85 m • Exit pressure increased by factor P_{exit}

Spatial discretization

- 1st-order finite volume (Roe)
- $\Delta x = 2 \times 10^{-2}$ m

Temporal discretization

- 1st-order backward Euler
- Time step $\Delta t = 1 imes 10^{-3}$ s

• space-time dimension NT = 90,000

Parameters: µ₁ = middle Mach number, µ₂ = Exit-pressure factor P_{exit}
 Offline training: |D_{train}| = 8

ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time *LSPG*: can produce smaller errors, but incurs >90% relative wall time

- LSPG: can produce smaller errors, but incurs >90% relative wall time
- GNAT: can produce smaller wall times, but incurs >35% relative error

- LSPG: can produce smaller errors, but incurs >90% relative wall time
- GNAT: can produce smaller wall times, but incurs >35% relative error
- Tailored temporal modes significantly outperform fixed temporal modes

- LSPG: can produce smaller errors, but incurs >90% relative wall time
- GNAT: can produce smaller wall times, but incurs >35% relative error
- Tailored temporal modes significantly outperform fixed temporal modes
- + For fixed error, ST-GNAT (tailored) almost 100X faster than GNAT

Questions?

Reference: Choi and C. Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction. *arXiv e-print*, (1703.04560), 2017.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.