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number of
time steps T
—

number of
state variables N

Most ROMs for nonlinear dynamical systems use
spatial simulation data to reduce the spatial dimension and complexity

Goal: use temporal simulation data to reduce the
temporal dimension and complexity
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Offline step 1: data collection
OAE: r"(x", ... ,x”_k;u) =0 n=1,... T
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Offline step 1: data collection

OAE: r”(x”,...,x”_k;u):O, n=1 .. T
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Oftline step 2: Tensor decomposition (POD)

OAE: r”(x”,...,x”_k;u)zﬂ, n=1 .. T

Compute dominant left singular vectors of mode-1 unfolding
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Oftline step 2: Tensor decomposition (POD)

OAE: r”(x”,...,x”_k;u)zﬂ, n=1 .. T

Compute dominant left singular vectors of mode-1 unfolding

X' X(l).IU | ’

& columns are principal components of the spatial simulation data
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Oﬂllﬂe I_S PG prOJeCthﬂ [C., Bou—Mosleh, Farhat, 2011]

OAE: rn(xn,...,xn_k;u):(), n=1 ... T |D : 0

1. Reduce number of spatial unknowns 2. Minimize OAE residual

U 2

x" = arg min | Ar" (D, X"l %"k )

2
LSPG OAE: )A(”:argminHAr”(xO+¢0,i”_1,...,i”_k;p)H DLt
v 2
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Ah med bOdy [Ahmed, Ramm, Faitin, 1984]
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» Unsteady Navier—Stokes » Re =

Spatial discretization

» 2nd-order finite volume

* DES turbulence model

» 1.7 x 10" degrees of freedom
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Temporal discretization

» 2nd-order BDF

» Time step At =38 X 10~>s
» 1.3 x 10° time instances
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

GNAT ROM (A = (P®,)"P) high-fidelity model
4 hours, 4 cores 13 hours, 512 cores
spatial dim: 283 spatial dim: 1.7 x 107
temporal dim: 1.3 x 103 temporal dim: 1.3 x 103

pressure
field

+438X computational-cost reduction
+60,500X spatial-dimension reduction
- Zero temporal-dimension reduction
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B61 captive carry

» Unsteady Navier—Stokes »*Re=6.3x106 » M..=0.6

Spatial discretization

» 2nd-order finite volume

* DES turbulence model

» 1.2 x 10° degrees of freedom
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Temporal discretization

» 2nd-order BDF

» Verified time step At =1.5 x 1073
» 8.3 x 10° time instances
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Turbulent-cavity results ic. ssrone, anti, 20171

vorticity field pressure field

GNAT ROM
32 min, 2 cores

spatial dim: 179
temporal dim: 458
high-fidelity
5 hours, 48 cores
spatial dim: 1.2M
temporal dim: 3,700
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+ 229X computational-cost reduction
+ 6,500X spatial-dimension reduction
- 8X temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?
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Reducing temporal complexity: existing work
Larger time steps with ROM

[Krysl et al., 2001; Lucia et al., 2004; Taylor et al., 2010; C. et al., 2017]

* Developed for explicit and implicit integrators

- Limited reduction of time dimension: <10X reductions typical
Forecasting using gappy POD in time

» Accurate Newton-solver initial guess [c. ray, van Bloemen Waanders, 2015]

» Coarse propagator in time-parallel setting (c. srencher, Haasdonk, Barth, 2016]
+ No error incurred and wall-time improvements observed

- No reduction of time dimension

Space-time ROMs

» Reduced basis [urban, patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
» POD—Galerkin [volkwein, weiland, 2006; Baumann, Benner, Heiland, 2016]

» ODE-residual minimization (constantine, wang, 2012]

+ Reduction of time dimension

+ Linear time-growth of error bounds’

- Requires space—time finite element discretization”

- No hyper-reduction”

- Only one space—time basis vector per training simulation’

" Only reduced-basis methods * Except [Constantine, Wang, 2012] t Except [Baumann, Benner, Heiland, 2016]
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Goals

Preserve attractive properties of existing space—time ROMs
+ Reduce both space and time dimensions
+ Slow time-growth of error bound

Overcome shortcomings of existing space—-time ROMs

+ Applicability to general nonlinear dynamical systems

+ Hyper-reduction to reduce complexity of nonlinearities

+ Extract multiple space—time basis vectors from each training simulation

Space—time least-squares Petrov—Galerkin (ST-LSPG) projection

Reference: Choi and C. Space—time least-squares Petrov—Galerkin projection
for nonlinear model reduction. arXiv e-print, (1703.04560), 2017.
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Spatial v. spatiotemporal trial subspaces

Full-order-model trial subspace
[xl--' }ERN@HRT

Spat:al trlal subspace
%' eS@RT CRV®R’

- + Spatial dimension reduced
- Temporal dimension large

Space-time trial subspace

~1 ~T} . ~ . or N T
X" -+ X = TC;X,'([JJ) cST CRT®R
How to [ ;

compute "+ Spatial dimension reduced
space—nm?e + Temporal dimension reduced
bases 7t;: - Additional approximation
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Space—time basis computation

Tensor slices
[Urban, Patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014; Volkwein, Weiland, 2006; Constantine, Wang, 2012]

T = X,

+ General space—time structure
- Only one basis vector per training simulation
- NT storage per basis vector
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Space—time basis computation

TruncatEd high'order SVD (T‘HOSVD) [Baumann, Benner, Heiland, 2016]
* Compute dominant left singular vectors of mode-2 unfolding

i - me-

= columns are principal components of the temporal simulation data
Ty(ij) —

+ Multiple basis vectors per training simulation
+ N+T storage per basis vector

- Enforces Kronecker—product structure

- Same temporal modes for each spatial mode
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Space—time basis computation
Sequentially truncated high-order SVD (ST-HOSVD)

[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2016]

X(p;) =X X1 ¢, = i —

Time evolution

i o) ¢i
Uus v’ Ty(ij) = | /

X(Cbi)(z) — I — 'i . ‘

=; columns are principal components of the temporal simulation data of ¢,

+ Multiple basis vectors per training simulation

+ N+T storage per basis vector

+ Tailored temporal modes for each spatial mode
- Enforces Kronecker-product structure

How to project governing equations?
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Space-time LSPG projection
LSPG

minimize r"( v, X" 1,...,x )l ., n=1 .., T
v 2

i

+ efficient: time-sequential solve

ST-LSPG
(S ()0, 0 (1) ) '

(U, p) =

TS (T, Y 17t/(tT‘1)“u--- S (TR0 )

minimize V M) 2

| ..l
..l 2

- costly: minimizing residual simultaneously over space and time
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LSPG hyper-reduction

L n ~  ~n—1 ~n—k.
minimize (b0 ,x" 7, ..., % - [t)

‘ A r
. |(I 2

Select A to make this less expensive
"~ = o, (Pd,)" Pr”

S (|)r
residual —
element r;’ . Pr"

’Fn

vector index

miniAmize
Vv
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LSPG hyper-reduction

minimize A r"(pv X"+ ... x"%
0 ((b ' ' ! ’l’l') 2

o | |

Select A to make this less expensive
"~ =®, (Pbd,)" Pr"

residual
element r/
_ vector index
LSPG-collocation GNAT
miniAmize P (& V)|, minimize|| (PD,)TP r"(d V)|

) (o

+ Res:dual computed at a few spatial degrees of freedom
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ST-LSPG hyper—reduc’uon

minimize r(V; )l2

| ..l
..l 2

r~i=®(P®d,)" Pr
» space—time residual b§5|s ®, via tensor decomposition
> space—time sampling P via sequential greedy

miniAmize
Vv
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ST-LSPG hyper-reduction
A F(\Al; H) p)

minimize A
. . | 2
Fai=®(Pb,)"Pr

» space—time residual bgsis ®, via tensor decomposition
> space—time sampling P via sequential greedy

ST-LSPG-collocation ST-GNAT
minimize P r (U;p)]2  minimize]]  (P®)"P 7 (U; u)]
A . A .
1 |

+ Residual computed at a few space—time degrees of freedom
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Sample mesh

LSPG
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Sample mesh
LSPG

t1 {2 {3 {4 {5 {6 t7 {8 {9 $10
+ Residual computed at a few spatial degrees of freedom
- Residual computed at all time instances
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Sample mesh
LSPG

t1 {2 {3 {4 {5 {6 t7 {8 {9 $10
+ Residual computed at a few spatial degrees of freedom
- Residual computed at all time instances

ST-LSPG

» P: Kronecker product of space sampling and time sampling

‘ tL, t5, to
tl t4 > t8 to

+ Residual computed at a few space—time degrees of freedom
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Error bound

LSPG
- Sequential solves: sequential accumulation of time-local errors
) 71(72)" exp(73t”) . A
x" — dx , < max min||r dv)|5
" = @%fspello < T E U max minll s (®9)]
N—— —,—,—,—_—_—_..

worst best time-local approximation residual

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

ST-LSPG

+ Single solve: no sequential error accumulation

[x" — @RS spglla < VT(L+A) min  max_[|x" —w"||2

best space-time approximation error

+ Stability constant: polynomial growth in time with degree 3/2
+ bounded by best space—time approximation error
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Quasi-1D Euler equation

flow dM

- A(x)
/_\l
Um 1 m
0 1 O(f(w)A
6‘21 | A ( g:’() ) =q(w), Vxe€l[0,1] m, Vte€ ][0, Tfina = 0.6 sec]

* Shock placed at x=0.85m  » Exit pressure increased by factor Peyt

Spatial discretization Temporal discretization
» 1st-order finite volume (Roe) » 1st-order backward Euler
» Ax =2 x 107 m * Time step At=1x10"7s

» space—time dimension NT = 90, 000

* Parameters: 11 = middle Mach number, 2 = Exit-pressure factor Pexit
» Offline training: |Dyrain| = 8
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Performance Pareto front
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Performance Pareto front
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+ ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time
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Performance Pareto front

ST-LSPG (tailofed)
ST-LSPG (fixed)
ST-GNAT (tailgred)
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+ ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time
» LSPG: can produce smaller errors, but incurs >90% relative wall time
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Performance Pareto front
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GNAT ]
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ST-LSPG (fixed)
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+ ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time
» LSPG: can produce smaller errors, but incurs >90% relative wall time
» GNAT: can produce smaller wall times, but incurs >35% relative error
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Performance Pareto front

LSPG
GNAT :
ST-LSPG (tailored)
ST-LSPG (fixed)
ST-GNAT (tailgred)
(1 ST-GNAT (fixeii)
sl ... .. —overall Paretofront
10° 10

relative wall time

relative error
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+ ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time
» LSPG: can produce smaller errors, but incurs >90% relative wall time

» GNAT: can produce smaller wall times, but incurs >35% relative error

* Tailored temporal modes significantly outperform fixed temporal modes
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Performance Pareto front

X
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+ ST-GNAT (tailored): Pareto optimal for <35% rel errors, <90% rel wall time
» LSPG: can produce smaller errors, but incurs >90% relative wall time
» GNAT: can produce smaller wall times, but incurs >35% relative error

* Tailored temporal modes significantly outperform fixed temporal modes
+ For fixed error, ST-GNAT (tailored) almost 100X faster than GNAT

Space—time least-squares Petrov—Galerkin projection Choi and Carlberg



Questions?

Reference: Choi and C. Space—time least-squares Petrov—Galerkin projection
for nonlinear model reduction. arXiv e-print, (1703.04560), 2017.
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minimize (P®)TP T (U; )2
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