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Nonlinear model reduction
Using machine learning to enable rapid simulation of extreme-scale physics models

reduced-order model
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High-fidelity simulation

+Indispensable across science, engineering, and entertainment

- High fidelity: extreme-scale computational models

Turbulent reacting flows Antarctic ice sheet modeling Magnetohydrodynamics
courtesy J. Chen, Sandia courtesy R. Tuminaro, Sandia courtesy J. Shadid, Sandia

computational barrier

Time-critical problems

» model predictive control ® interactive virtual environment

® health monitoring ® design optimization
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Approach: exploit simulation data

d
ODE: d_: =f(x;t, ), x(0,u)=x0(pt), t€]|0, Thnal, peED

Time-critical problem: rapidly solve ODE for pr € Dquery

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for g € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Diraining
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Model reduction criteria

1. Accuracy: achieves <1% error

2. Low cost: achieves >100x computational savings
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Model reduction criteria

1. Accuracy: achieves <1% error
» autoencoders for accurate nonlinear manifolds e, c, 2018
» optimal projection (c, Bou-Moslen, Farhat, 2011; C., Barone, Antil, 2017]
2. Low cost: achieves >100x computational savings
» sample mesh (c, rarhat, cortial, Amsallem, 2013]
> space—time projection [choi c., 2019]

3. Structure preservation: preserves important physical properties
» enforce conservation |aws (c, choi, sargsyan, 2018]
» preserve Lagrangian structure and stability (c. soggs, Tuminaro, 2015; peng, c. 2017]

4. Generalization: always works, even in difficult cases
> h-adaptivity (c, 201s]
> vector-space sieving [etter, c., 2019]

5. Certification: accurately quantifies the reduction error

* machine-learning error models [prohmann, c., 2015; Trehan, ., Durlofsky, 2017; Freno, €., 2019]
* machine-learning closure models (pagani, Manzoni, c., 2019]
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Model reduction criteria

1. Accuracy: achieves <1% error

» autoencoders for accurate nonlinear manifolds jLee, c. 2018
» optimal projection (c, Bou-Moslen, Farhat, 2011; C., Barone, Antil, 2017]
2. Low cost: achieves >100x computational savings

3. Structure preservation: preserves important physical properties
» enforce conservation 1aws (c., choi, sargsyan, 2018]

4. Generalization: always works, even in difficult cases

5. Certification: accurately quantifies the reduction error
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Training ]
ODE: d—: — f(x; t, )

1. Training: Solve ODE for g € Dirining and collect simulation data

number of

time steps T
+—>

A

number of
state variables N
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Training ]
ODE: d—: — f(x; t, )

1. Training: Solve ODE for g € Dirining and collect simulation data
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Machine learning

dx
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify low-dimensional manifold
3. Reduction: Project ODE onto manifold and solve for tt € Dguery \ Dhraining

» Define low-dim manifold from decoder:
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Machine learning

dx
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify low-dimensional manifold
3. Reduction: Project ODE onto manifold and solve for tt € Dguery \ Dhraining

)| % € RP}C RV
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Reduction

dx
. — =f(x:t,
ODE ” (x; t, u)
(IS Dtraining

3. Reduction: Project ODE onto manifold and solve for tt € Dquery \ Drraining

Reduce the number of unknowns

dx dx dx
t) ~x(t) =g(x(t)) €S — o — = X)— € T
xi> xi> g(x(1) X e T e TS

oo TR

Perform optimal projection
E(x) satisfies m\ilgi%lisze v — f(g(X);t, 1)||2
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Reduction

dx
. — =f(xt,
ODE: — = f(xit, )
NEDtraining

3. Reduction: Project ODE onto manifold and solve for tt € Dquery \ Drraining

Reduce the number of unknowns

dx dx dx
t) ~x(t) =g(x(t)) €S — o — = X)— € T
xi> xi> a(x(1) X T v D e s

oo TR

Perform optimal projection
with physics constraints
E(x) satisfies m\ilreli%]zisze v — f(g(X);t, 1)||2

subject to c(v, g(x);t, ;) =0
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Reduction

dx
. — =f(x:t,
ODE ” (x; t, u)
(IS Dtraining

3. Reduction: Project ODE onto manifold and solve for tt € Dquery \ Drraining

Reduce the number of unknowns

dx dx dx
t) ~x(t) =g(x(t)) €S — o — = X)— € T
xi> xi> g(x(1) X e T e TS

oo TR

Perform optimal projection
with physics constraints
E(x) satisfies m\ilréi;?{isze v —F(2(X);t, 1)||2

subject to €(v, g(x);t, ;) =0

+ Model integrates computational physics with deep learning
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Reduction

dx
. — =f(xt,
ODE: — = f(xit,p)
IJ'EDtraining

3. Reduction: Project ODE onto manifold and solve for tt € Dquery \ Drraining

Reduce the number of unknowns

dx dx dx
t) ~x(t) =g(x(t)) €S — o — = X)— € T
xi> xi> a(x(1) X T v D e s

oo TR

Perform optimal projection
E(x) satisfies minimize ||v — f(g(X);t, i)||2

with physics constraints
ve ;S

subject to c(v, 2(x); t, ) =0

+ Model integrates computational physics with deep learning
+ Physics constraints exactly satisfied
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High-fidelity model

conserved variable
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Currently implementing in large-scale code
vorticity field pressure field

Reduced-order model
PCA subspace
32 min, 2 cores

high-fidelity model
5 hours, 48 cores

Text

+229x savings in core—hours
+< 1% error in time-averaged drag
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