Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Nonlinear model reduction

Using machine learning to enable rapid simulation of extreme-scale physics models

Kookjin Lee and <u>Kevin Carlberg</u>

Sandia National Laboratories

Stanford ICME Xpo May 17, 2019

High-fidelity simulation

- + Indispensable across science, engineering, and entertainment
- High fidelity: extreme-scale computational models

Antarctic ice sheet modeling courtesy R. Tuminaro, Sandia

Magnetohydrodynamics courtesy J. Shadid, Sandia

computational barrier

Time-critical problems

- model predictive control
- health monitoring

- interactive virtual environment
- design optimization

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Time-critical problem: rapidly solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$

Idea: exploit simulation data collected at a few points

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Model reduction criteria

1. *Accuracy:* achieves <1% error

2. **Low cost:** achieves >100x computational savings

Model reduction criteria

- 1. *Accuracy:* achieves <1% error
 - autoencoders for accurate nonlinear manifolds [Lee, C., 2018]
 - optimal projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- 2. **Low cost:** achieves >100x computational savings
 - sample mesh [C., Farhat, Cortial, Amsallem, 2013]
 - space—time projection [Choi, C., 2019]
- 3. Structure preservation: preserves important physical properties
 - enforce conservation laws [C., Choi, Sargsyan, 2018]
 - Preserve Lagrangian structure and stability [C. Boggs, Tuminaro, 2015; Peng, C. 2017]
- 4. Generalization: always works, even in difficult cases
 - h-adaptivity [c., 2015]
 - vector-space sieving [Etter, C., 2019]
- 5. *Certification:* accurately quantifies the reduction error
 - machine-learning error models [Drohmann, C., 2015; Trehan, C., Durlofsky, 2017; Freno, C., 2019]
 - machine-learning closure models [Pagani, Manzoni,, C., 2019]

Model reduction criteria

- 1. *Accuracy:* achieves <1% error
 - autoencoders for accurate nonlinear manifolds [Lee, C., 2018]
 - Optimal projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- 2. **Low cost:** achieves >100x computational savings

- 3. Structure preservation: preserves important physical properties
 - enforce conservation laws [C., Choi, Sargsyan, 2018]
- 4. Generalization: always works, even in difficult cases

5. Certification: accurately quantifies the reduction error

Training

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. Reduction: Project ODE onto manifold and solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Training

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. Reduction: Project ODE onto manifold and solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Machine learning

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. Reduction: Project ODE onto manifold and solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Define low-dim manifold from decoder:

Machine learning

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. Reduction: Project ODE onto manifold and solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

• Define low-dim manifold from decoder: $S := \{ \mathbf{g}(\hat{\mathbf{x}}) \mid \hat{\mathbf{x}} \in \mathbb{R}^p \} \subseteq \mathbb{R}^N$

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. *Reduction:* Project ODE onto manifold and solve for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Reduce the number of unknowns

$$\mathbf{x}(t) pprox \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$
 $\qquad \qquad \frac{d\mathbf{x}}{dt} pprox \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}}\mathcal{S}$

Perform optimal projection

$$\frac{d\tilde{\mathbf{x}}}{dt}(\hat{\mathbf{x}})$$
 satisfies minimize $\|\mathbf{v} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t, \boldsymbol{\mu})\|_2$

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. *Reduction:* Project ODE onto manifold and solve for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Reduce the number of unknowns

$$\mathbf{x}(t) pprox \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$
 $\qquad \qquad \frac{d\mathbf{x}}{dt} pprox \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}}\mathcal{S}$

Perform optimal projection with physics constraints

$$rac{d ilde{\mathbf{x}}}{dt}(\hat{\mathbf{x}})$$
 satisfies minimize $\|\mathbf{v} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t, \mu)\|_2$ subject to $\mathbf{c}(\mathbf{v}, \mathbf{g}(\hat{\mathbf{x}}); t, \mu) = \mathbf{0}$

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. *Reduction:* Project ODE onto manifold and solve for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Reduce the number of unknowns

$$\mathbf{x}(t) pprox \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$
 $\qquad \qquad \frac{d\mathbf{x}}{dt} pprox \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}}\mathcal{S}$

Perform optimal projection with physics constraints

$$\frac{d\tilde{\mathbf{x}}}{dt}(\hat{\mathbf{x}})$$
 satisfies minimize $\|\mathbf{v} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t, \mu)\|_2$

subject to
$$\mathbf{c}(\mathbf{v},\mathbf{g}(\hat{\mathbf{x}});t,\mu)=\mathbf{0}$$

Model integrates computational physics with deep learning

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify low-dimensional manifold
- 3. *Reduction:* Project ODE onto manifold and solve for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Reduce the number of unknowns

$$\mathbf{x}(t) pprox \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$
 $\qquad \qquad \frac{d\mathbf{x}}{dt} pprox \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}}\mathcal{S}$

Perform optimal projection with physics constraints

$$\frac{d\tilde{\mathbf{x}}}{dt}(\hat{\mathbf{x}})$$
 satisfies minimize $\|\mathbf{v} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t, \boldsymbol{\mu})\|_2$

subject to
$$\mathbf{c}(\mathbf{v},\mathbf{g}(\hat{\mathbf{x}});t,\mu)=\mathbf{0}$$

- + Model integrates computational physics with deep learning
- + Physics constraints exactly satisfied

High-fidelity model

Reduced-order models

PCA subspace

Solution error: 13%

Conservation violation: 16%

Autoencoder manifold

Solution error: 0.5%

Conservation violation: 1%

PCA subspace with conservation constraints

Solution error:

Autoencoder manifold with conservation constraints

Solution error: 0.2%

Conservation violation: <0.001% Conservation violation: <0.001%

Currently implementing in large-scale code

vorticity field

pressure field

Reduced-order model PCA subspace 32 min, 2 cores

high-fidelity model 5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

References:

- K. Lee and K. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. arXiv e-print, (1812.08373), 2018.
- K. Carlberg, Y. Choi, and S. Sargsyan. Conservative model reduction for finite-volume models. Journal of Computational Physics, 371:280–314, 2018.
- K. Carlberg, M. Barone, and H. Antil. Galerkin v. least-squares Petrov—Galerkin projection in nonlinear model reduction. Journal of Computational Physics, 330:693—734, 2017.