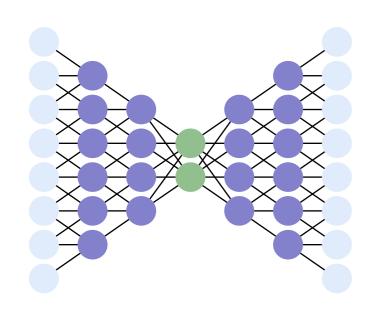
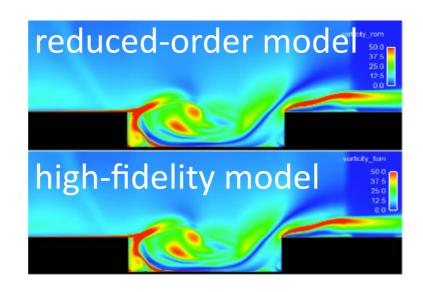
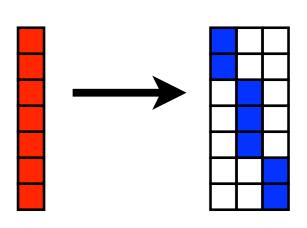
Nonlinear model reduction

Using machine learning to enable extreme-scale simulation for time-critical aerospace applications







Kevin Carlberg

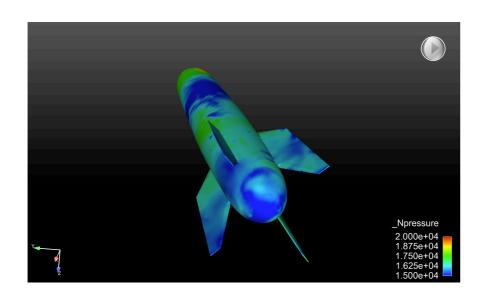
Sandia National Laboratories

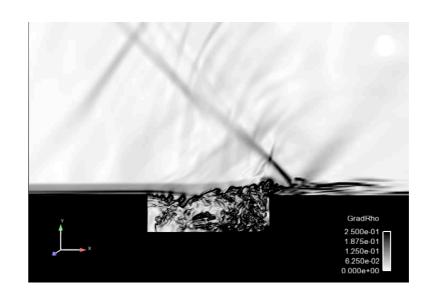
MIT

Cambridge, Massachusetts February 22, 2019

High-fidelity simulation

- +Indispensable in aerospace applications
- Extreme-scale models required for high fidelity





- + Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Time-critical applications

- rapiddesign
- uncertaintyquantification
- structural health monitoring
- model predictive control

Computational barrier at NASA

The New York Times

Geniuses Wanted: NASA Challenges

Coders to Speed Up Its Supercomputer

"Despite tremendous progress made in the past few decades, CFD tools are too slow for simulation of complex geometry flows... [taking] from thousands to millions of computational core-hours."

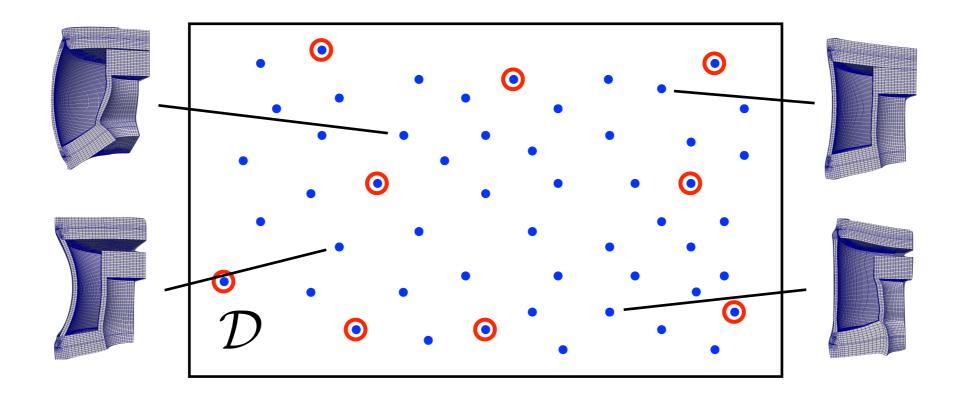
"To enable high-fidelity CFD for multi-disciplinary analysis and design, the speed of computation must be increased by orders of magnitude."

"The desired outcome is any approach that can accelerate calculations by a factor of 10x to 1000x."

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Time-critical problem: rapidly solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$



Idea: exploit simulation data collected at a few points

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Model reduction criteria

- 1. *Accuracy:* achieves less than 1% error
- 2. Low cost: achieves at least 100x computational-cost savings
- 3. Structure preservation: preserves intrinsic physical properties
- 4. Robustness: guaranteed satisfaction of any accuracy requirement
- 5. *Certification:* accurately quantify the ROM error

Model reduction: existing approaches

Linear time-invariant systems: mature [Antoulas, 2005]

- Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
- Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]
- + Accurate, reliable, certified: sharp a priori error bounds
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: guaranteed stability

Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

- Reduced-basis method
- + Accurate, reliable, certified: sharp a priori error bounds, convergence
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: preserve operator properties

Nonlinear dynamical systems: ineffective

- Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987]
- *Inaccurate, unreliable*: often unstable
- Not certified: error bounds grow exponentially in time
- *Expensive*: projection insufficient for speedup
- Structure not preserved: physical properties ignored

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

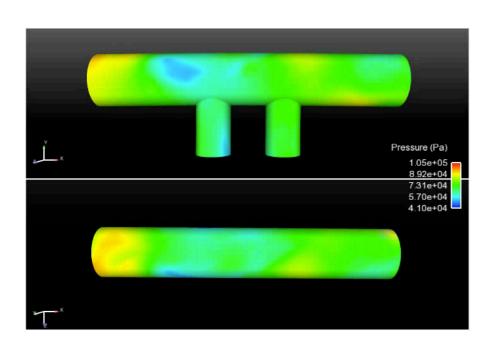
Collaborators: Matthew Barone (Sandia), Harbir Antil (GMU)

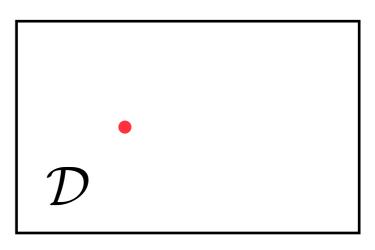
* #2 most-cited paper, Int J Numer Meth Eng, 2011

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

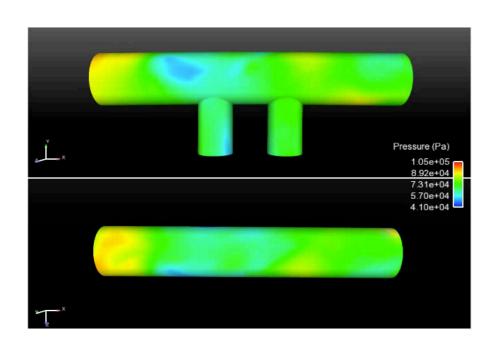


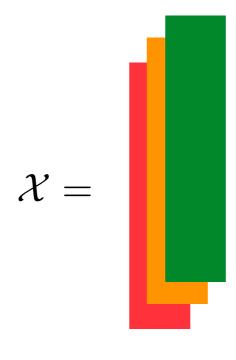


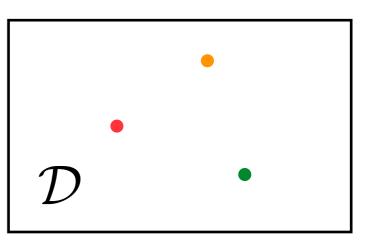
Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$





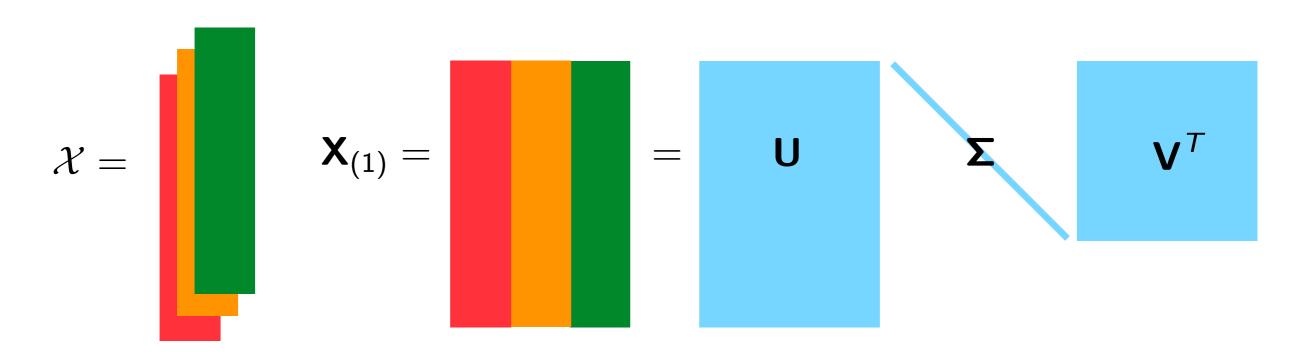


Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding



Nonlinear model reduction Kevin Carlberg

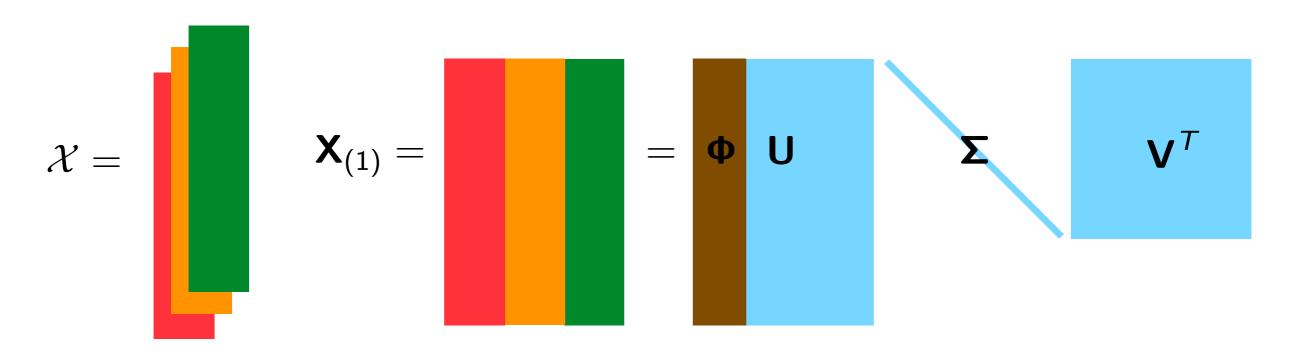
10

Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding



Φ columns are principal components of the spatial simulation data

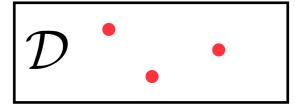
How to integrate these data with the computational model?

Nonlinear model reduction Kevin Carlberg

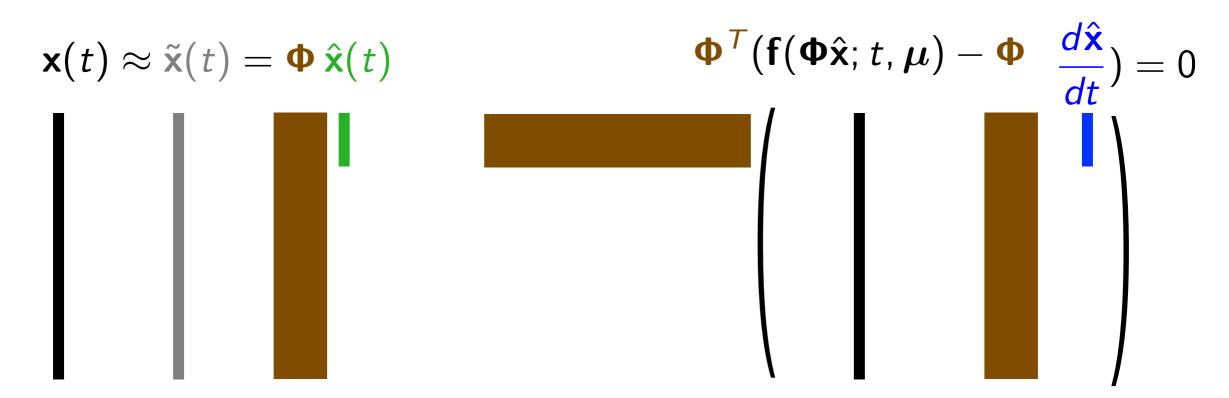
10

Previous state of the art: POD-Galerkin

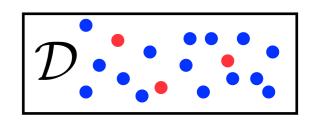
ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$



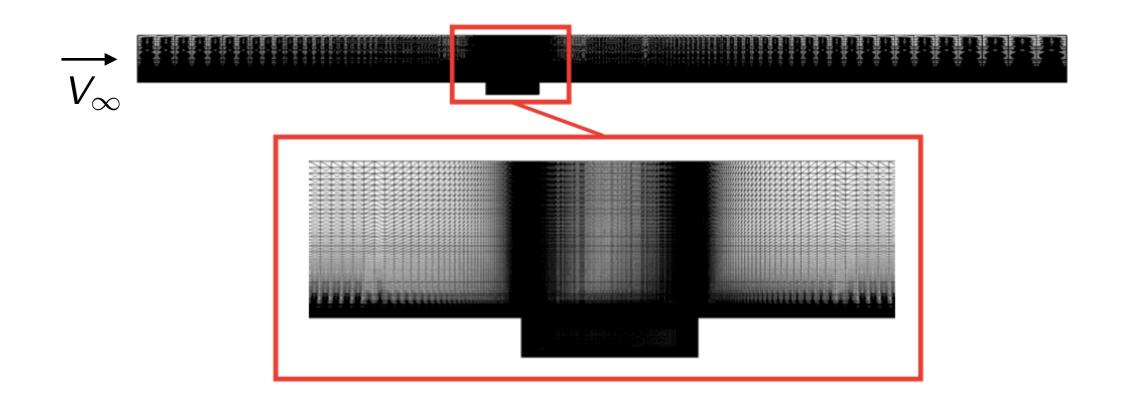
- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$
- 1. Reduce the number of unknowns 2. Reduce the number of equations



Galerkin ODE:
$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t, \boldsymbol{\mu})$$



Captive carry



→ Unsteady Navier-Stokes → Re = 6.3×10^6 → $M_{\infty} = 0.6$

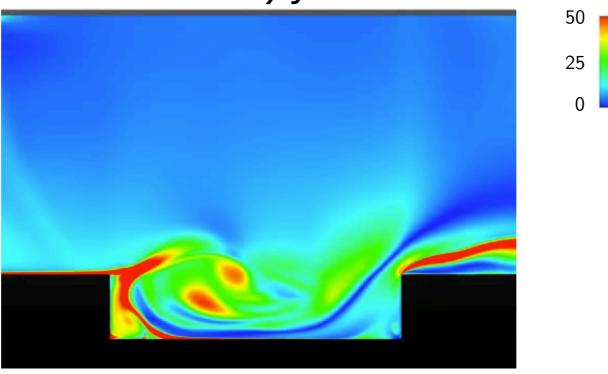
Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

High-fidelity model solution



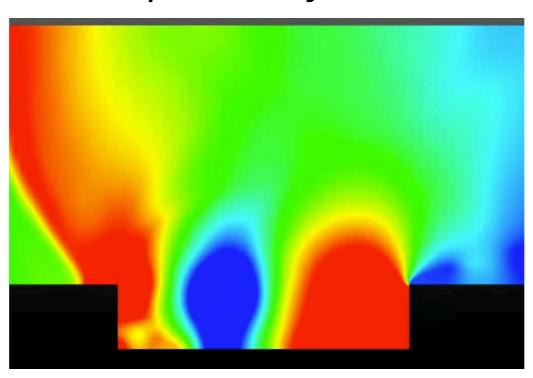
pressure field

23

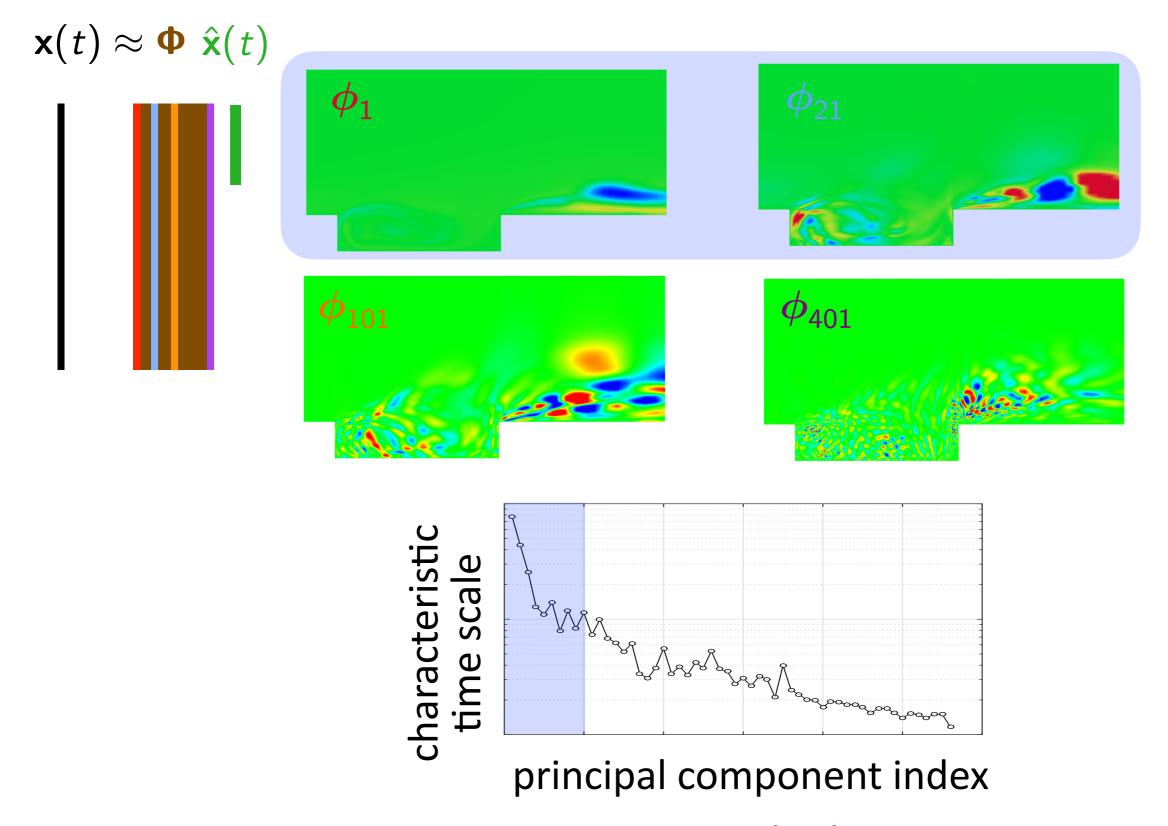
20

17

13



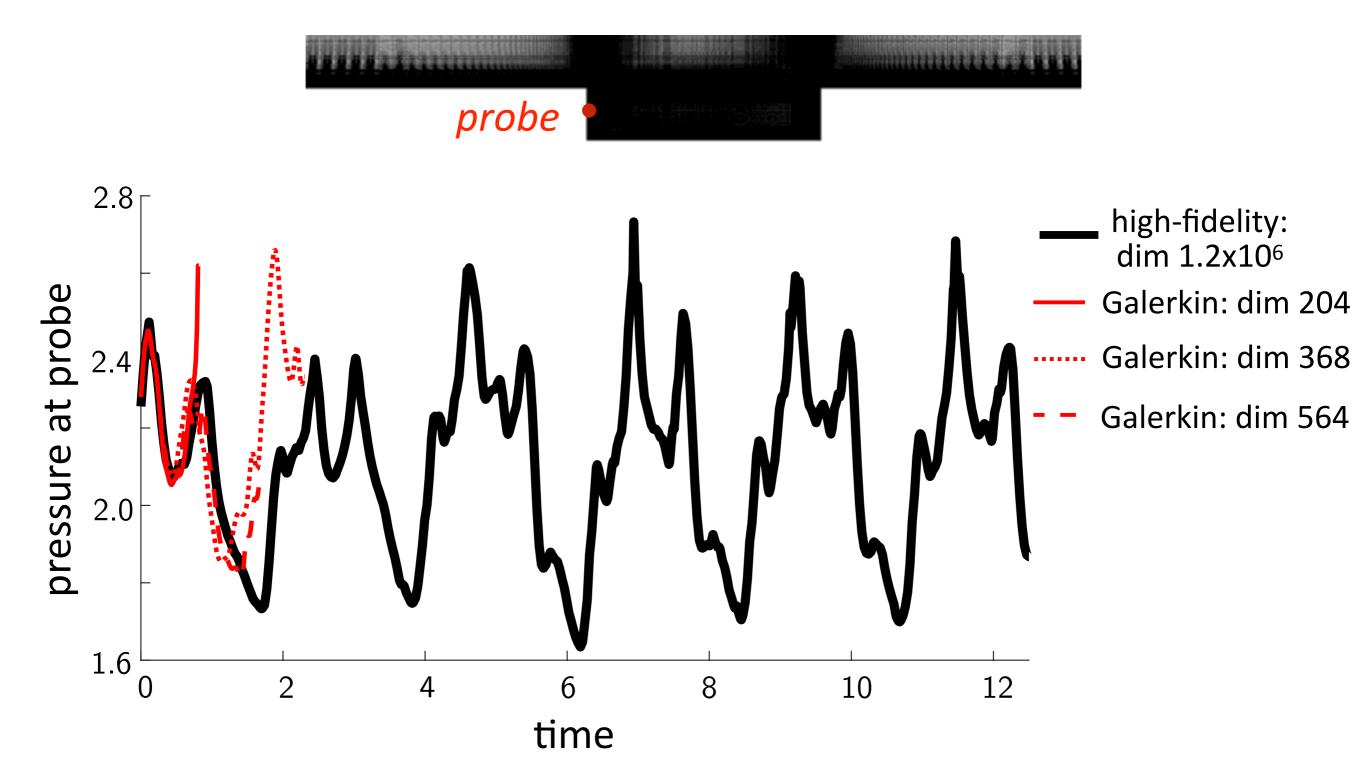
Principal components



Truncation preserves coarse spatiotemporal solution components

14

Galerkin performance



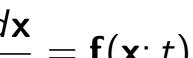
- Galerkin projection fails regardless of basis dimension

Can we construct a better projection?

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$



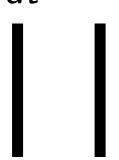
Galerkin ODE

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^{\mathsf{T}}\mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}};t)$$

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$



Galerkin ODE

$$\Phi \frac{d\hat{\mathbf{x}}}{dt} = \Phi \Phi^{\mathsf{T}} \mathbf{f}(\Phi \hat{\mathbf{x}}; t)$$

+ Galerkin ODE solution: optimal in the minimum-residual sense:

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{v}, \mathbf{x}; t)||_{2}$$

$$\mathbf{r}(\mathbf{v}, \mathbf{x}; t) := \mathbf{v} - \mathbf{f}(\mathbf{x}; t)$$

ΟΔΕ

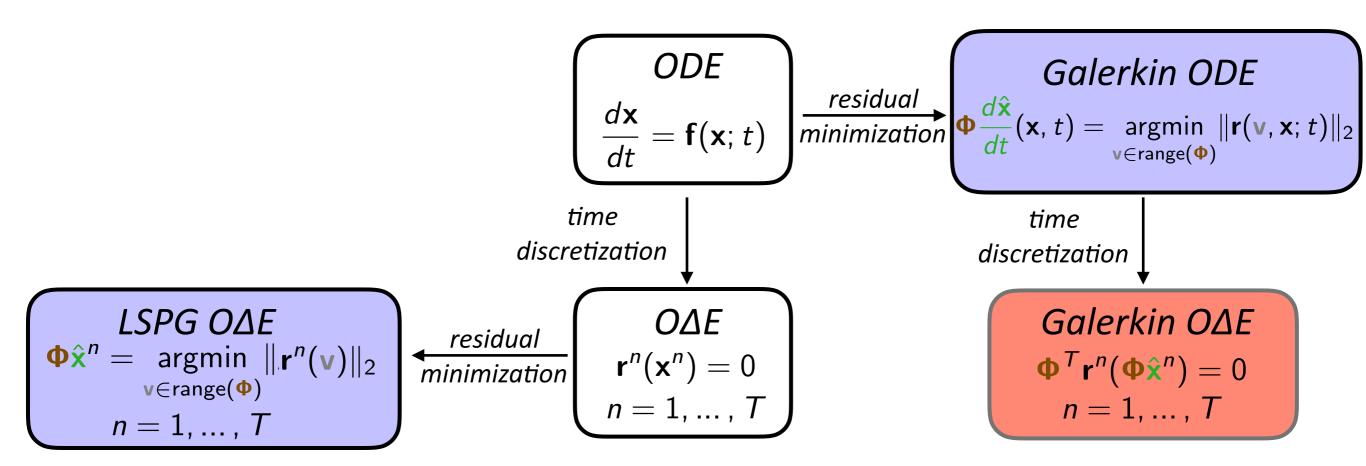
$$\mathbf{r}^{n}(\mathbf{x}^{n}) = 0, \ n = 1, ..., T$$

$$\mathbf{\Phi}^T \mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{x}}^n) = 0, \quad n = 1, ..., T$$

$$\mathbf{r}^{n}(\mathbf{x}) := \alpha_{0}\mathbf{x} - \Delta t \beta_{0}\mathbf{f}(\mathbf{x}; t^{n}) + \sum_{j=1}^{k} \alpha_{j}\mathbf{x}^{n-j} - \Delta t \sum_{j=1}^{k} \beta_{j}\mathbf{f}(\mathbf{x}^{n-j}; t^{n-j})$$

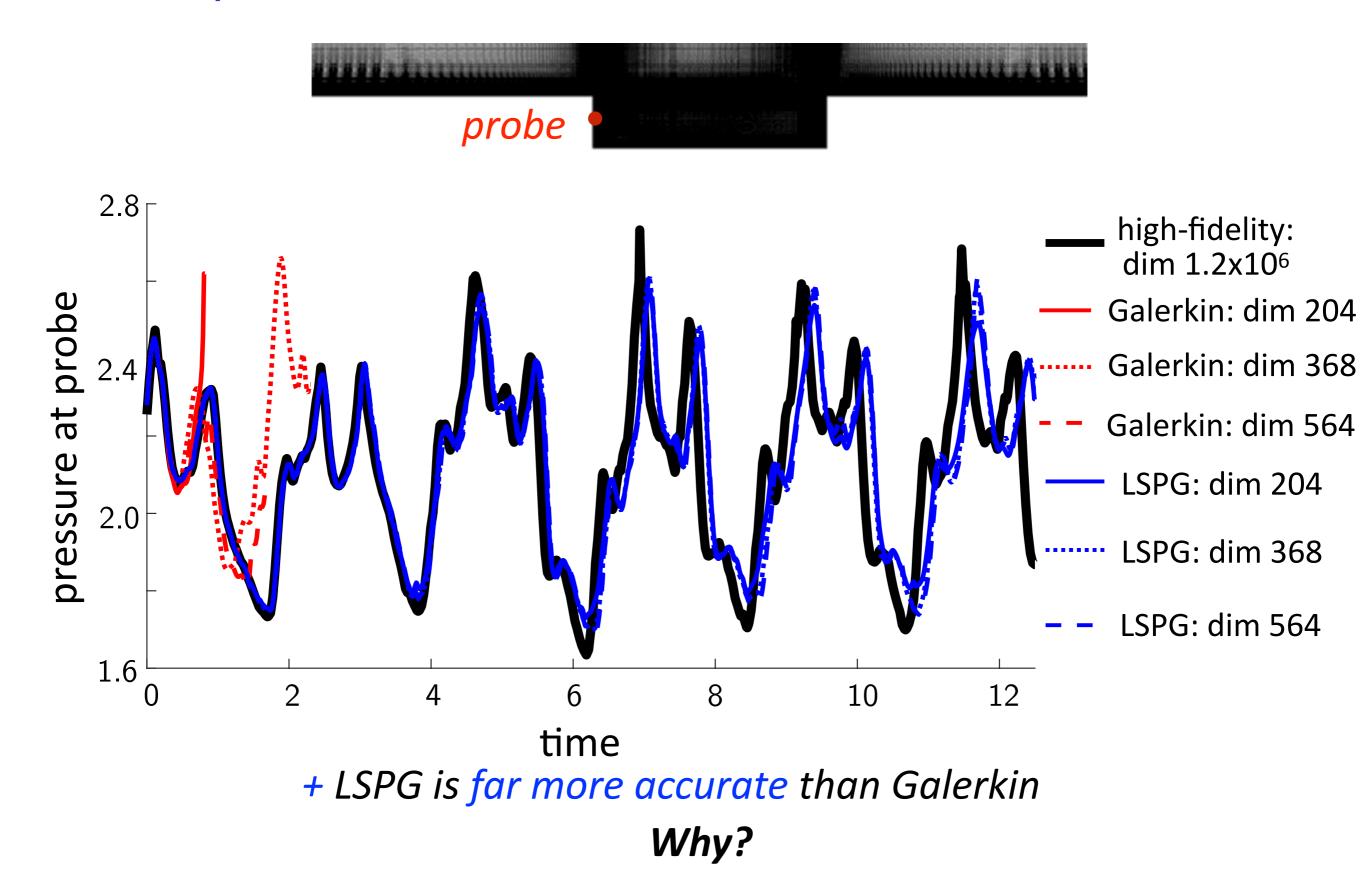
- Galerkin OΔE solution: not generally optimal in any sense

Residual minimization and time discretization



Least-squares Petrov-Galerkin (LSPG) projection [C., Bou-Mosleh, Farhat, 2011]

LSPG performance



Error bound

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$, then

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n}\|_{2} \leq \frac{1}{h}\|\mathbf{r}_{\mathsf{G}}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n-\ell}\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{1}{h}\min_{\hat{\mathbf{v}}}\|\mathbf{r}_{\mathsf{LSPG}}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n-\ell}\|_{2}$$

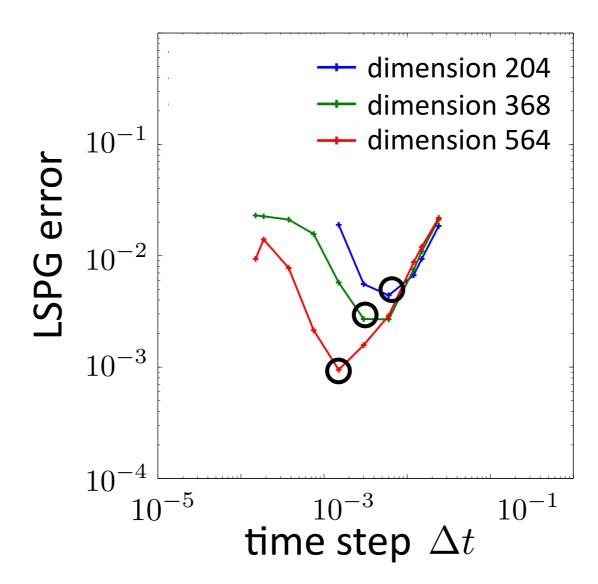
+ LSPG sequentially minimizes the error bound

$$\|\mathbf{r}_{\mathrm{LSPG}}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} = |\alpha_{0}|\|\mathbf{\Phi}(\hat{\mathbf{v}} - \hat{\mathbf{x}}_{\mathrm{LSPG}}^{n-1}) - (\mathbf{\bar{x}}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathrm{LSPG}}^{n-1}) - \frac{\Delta t \beta_{0}}{\alpha_{0}}(\mathbf{f}(\mathbf{\Phi}\hat{\mathbf{v}}; t^{n}) - \mathbf{f}(\mathbf{\bar{x}}^{n}; t^{n}))\|_{2}$$
approx increment

Ensuring Φ captures solution increments over Δt reduces LSPG error bound

LSPG dependence on time step

- Shrinking Δt has two competing effects:
 - + time-discretization error: smaller
 - error bound: more difficult for Φ to resolve solution increments



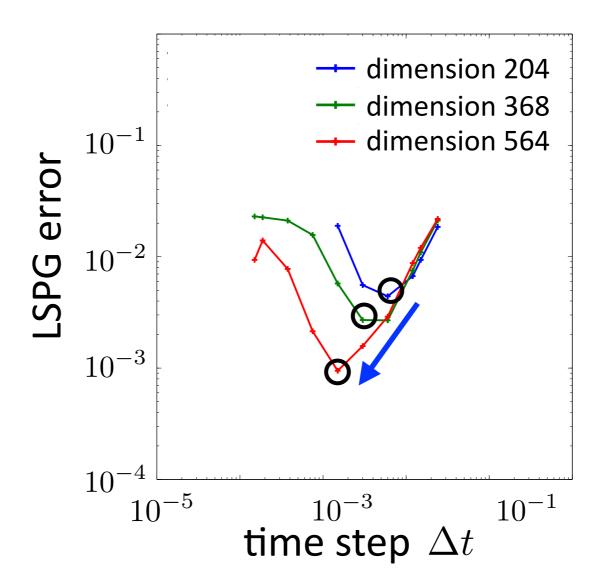
• Best LSPG accuracy: intermediate Δt balances these two effects

Nonlinear model reduction Kevin Carlberg

20

LSPG dependence on time step

- Shrinking Δt has two competing effects:
 - + time-discretization error: smaller
 - error bound: more difficult for Φ to resolve solution increments



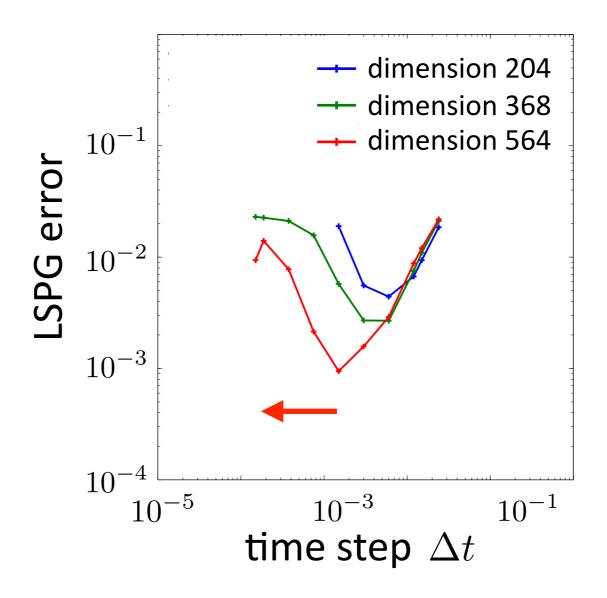
- Best LSPG accuracy: intermediate Δt balances these two effects
- Higher-dimension Φ : can capture solution increments over smaller Δt

20

Limiting equivalence

Theorem: Equivalence [C., Barone, Antil, 2017]

Galerkin and LSPG projection are equivalent in the limit $\Delta t \rightarrow 0$.



Explains poor Galerkin accuracy: equivalent to LSPG as $\Delta t \rightarrow 0$

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013*]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

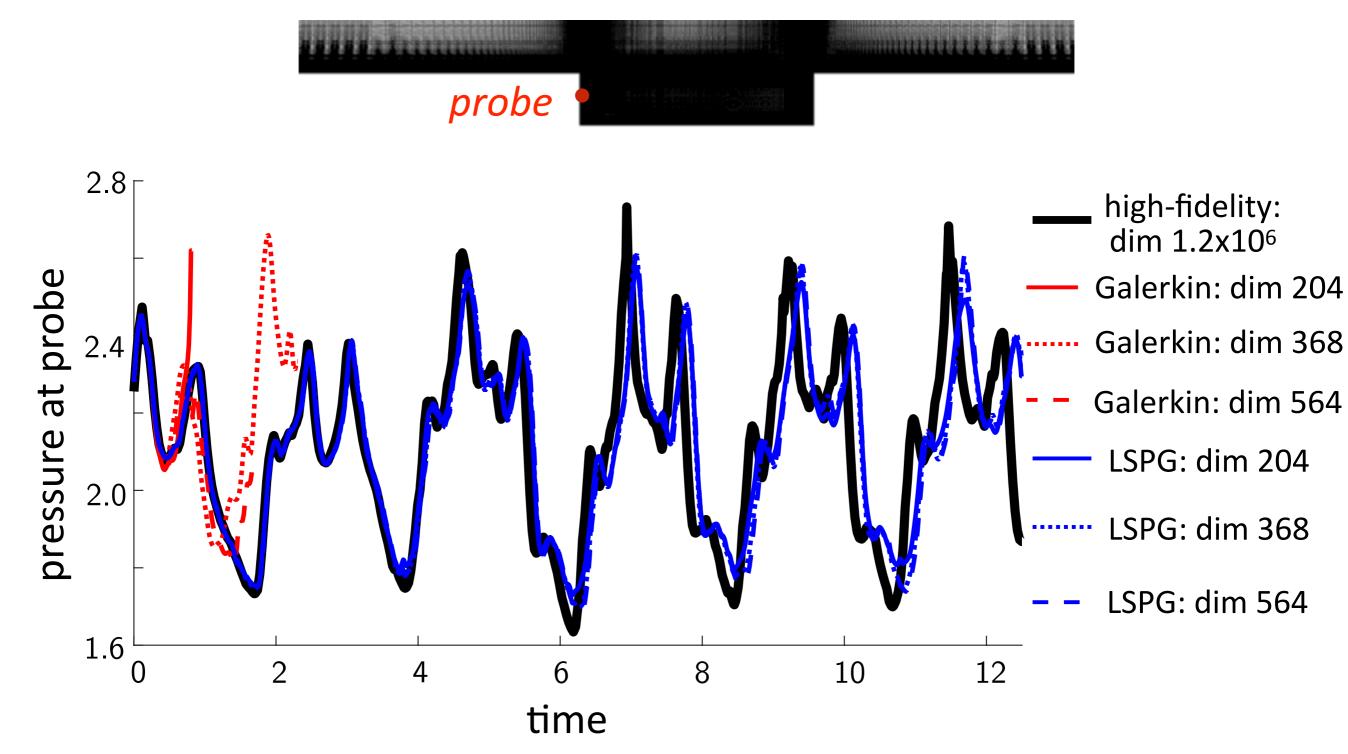
Collaborators: Julien Cortial (Stanford), Charbel Farhat (Stanford)

* #2 most-cited paper, J Comp Phys, 2013

Nonlinear model reduction Kevin Carlberg

22

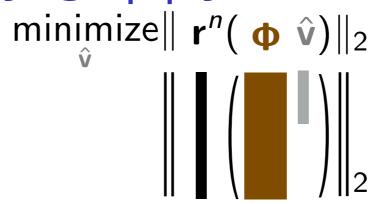
Wall-time problem



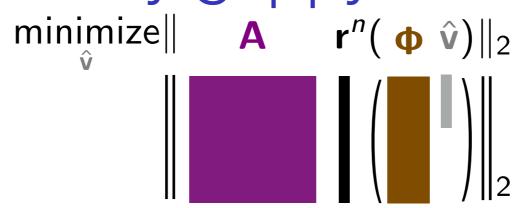
- High-fidelity simulation: 1 hour, 48 cores
- Fastest LSPG simulation: 1.3 hours, 48 cores

Why does this occur?
Can we fix it?

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

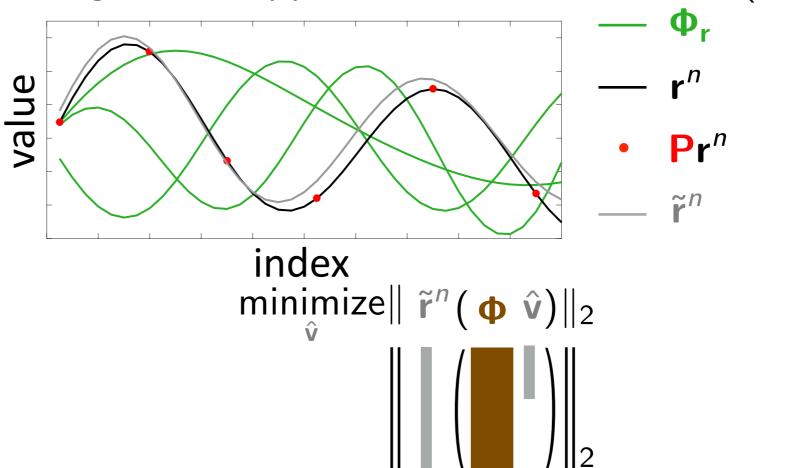


Cost reduction by gappy PCA [Everson and Sirovich, 1995]

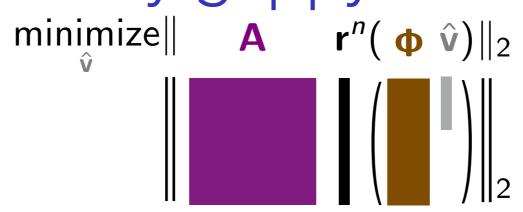


Can we introduce a weighting matrix A to make this less expensive?

- ullet Training: collect residual tensor \mathcal{R}^{ijk} while solving ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$
- Machine learning: compute residual PCA Φ_r and sampling matrix P
- **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+\mathbf{P}\mathbf{r}^n$

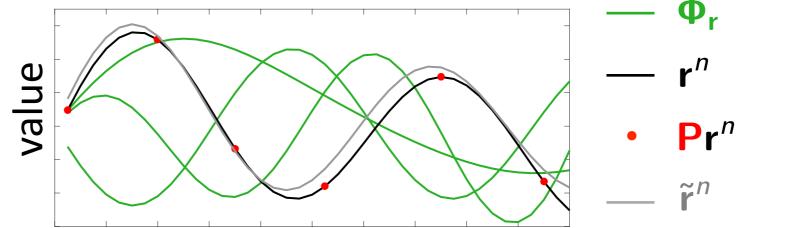


Cost reduction by gappy PCA [Everson and Sirovich, 1995]



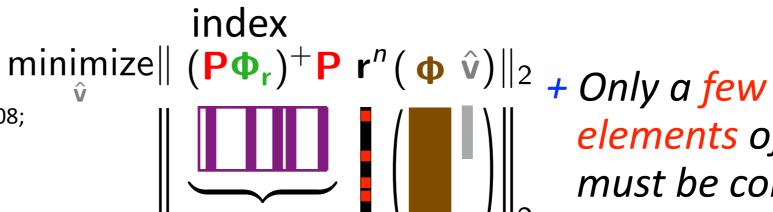
Can we introduce a weighting matrix A to make this less expensive?

- **Training:** collect residual tensor \mathcal{R}^{ijk} while solving ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$
- Machine learning: compute residual PCA Φ_r and sampling matrix P
- **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+ \mathbf{P}\mathbf{r}^n$



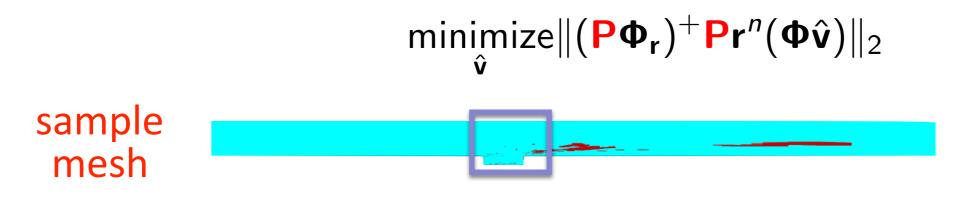
Related:

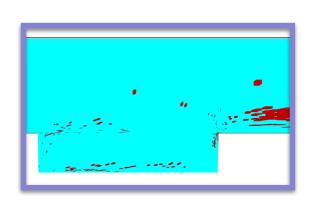
- Collocation [Ryckelynck, 2005; Legresley, 2006; Astrid et al., 2008]
- empirical interpolation [Barrault et al., 2004; Nguyen, Peraire, 2008; Chaturantabut and Sorensen, 2010]
- FE subassembly [An et al., 2008; Farhat et al., 2014]



elements of rⁿ must be computed

Sample mesh [C., Farhat, Cortial, Amsallem, 2013]





25

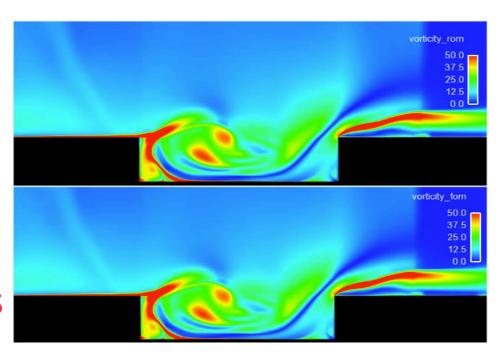
+ HPC on a laptop

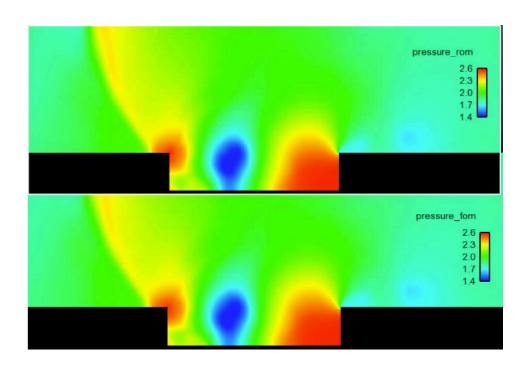
vorticity field

pressure field

32 min, 2 cores

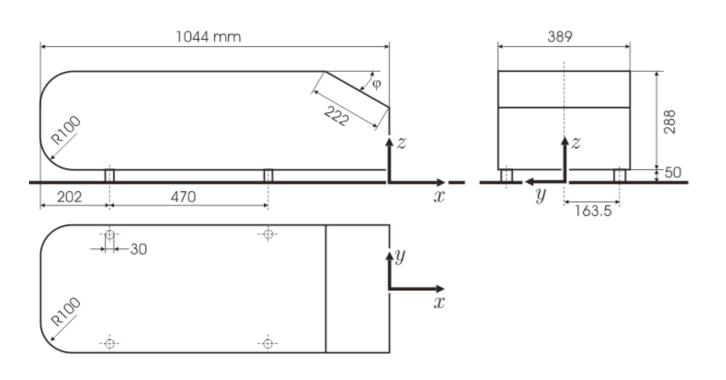
high-fidelity
5 hours, 48 cores

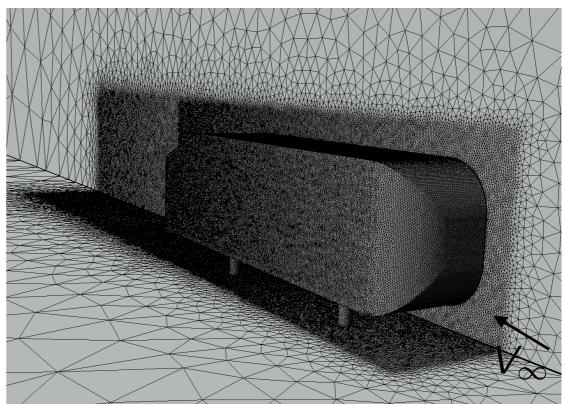




- + 229x savings in core-hours
- + < 1% error in time-averaged drag

Ahmed body [Ahmed, Ramm, Faitin, 1984]





Large of the bound of the bou

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

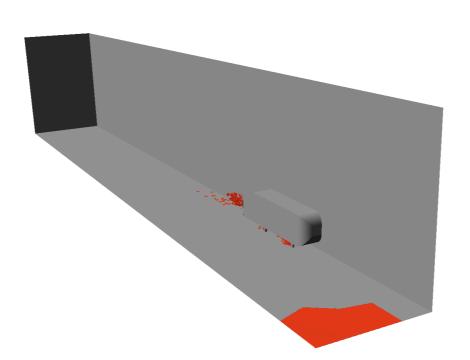
Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5} s$

• 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

sample mesh

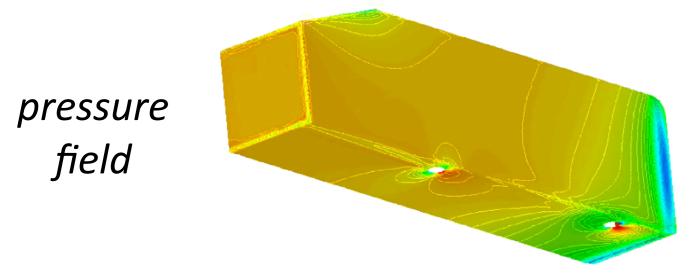


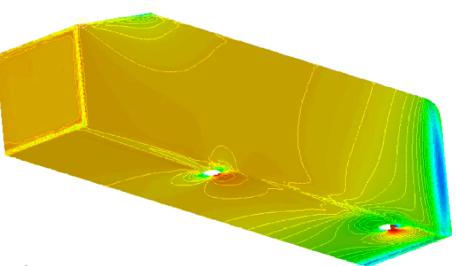
+ HPC on a laptop

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathbf{r}})^{+}\mathbf{P}$

4 hours, 4 cores

high-fidelity model 13 hours, 512 cores





+ 438x savings in core—hours

+ Largest nonlinear dynamical system on which ROM has ever had success

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
- Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborator: Youngsoo Choi (Sandia)

Captive-carry results [C., Barone, Antil, 2017]

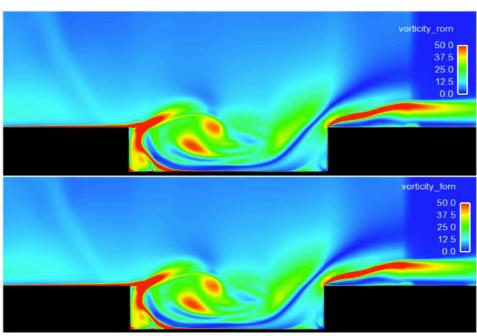
vorticity field

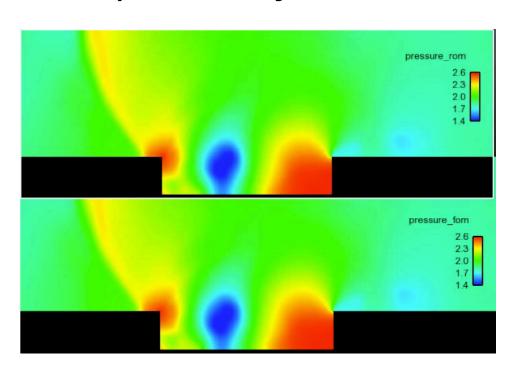
pressure field

GNAT ROM
32 min, 2 cores
spatial dim: 179
temporal dim: 458
high-fidelity
5 hours, 48 cores

spatial dim: 1.2M

temporal dim: 3,700





- + 229X computational-cost reduction
- + 6,500X spatial-dimension reduction
- 8X temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?

Reducing temporal complexity:

Larger time steps with ROM

[Krysl et al., 2001; Lucia et al., 2004; Taylor et al., 2010; C. et al., 2017]

- Developed for explicit and implicit integrators
- Limited reduction of time dimension: <10X reductions typical

Space-time ROMs

- Reduced basis [Urban, Patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
- POD-Galerkin [Volkwein, Weiland, 2006; Baumann, Benner, Heiland, 2016]
- ODE-residual minimization [Constantine, Wang, 2012]
- + Reduction of time dimension
- + Linear time-growth of error bounds
- Requires space—time finite element discretization^ˆ
- No hyper-reduction
- Only one space—time basis vector per training simulation

[^] Only reduced-basis methods

30

Goals

Preserve attractive properties of existing space—time ROMs

- + Reduce both space and time dimensions
- + Slow time-growth of error bound

Overcome shortcomings of existing space—time ROMs

- + Applicability to general nonlinear dynamical systems
- + Hyper-reduction
- + Extract multiple space—time basis vectors from each training simulation

Space—time least-squares Petrov—Galerkin (ST-LSPG) projection [Choi and C., 2019]

Spatial v. spatiotemporal trial

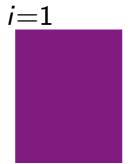
Full-order-model trial subspace $[\mathbf{x}^1 \ \cdots \ \mathbf{x}^T] \in \mathbb{R}^N \otimes \mathbb{R}^T$

$$\left[\mathbf{x}^{1} \ \cdots \ \mathbf{x}^{T}\right] \in \mathbb{R}^{N} \otimes \mathbb{R}^{T}$$

- Spatial dimension reduced
- Temporal dimension large

Space-time trial subspace

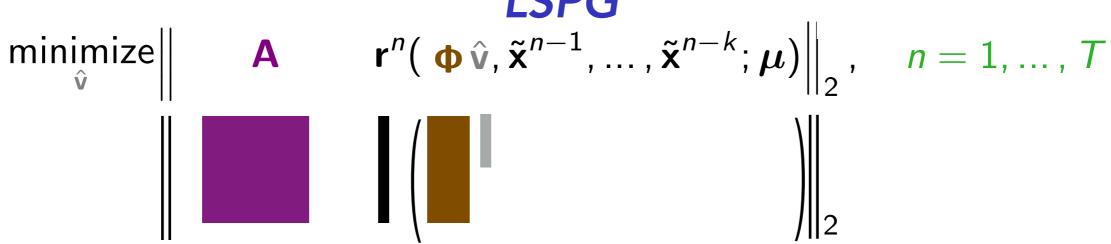
$$\begin{bmatrix} \tilde{\mathbf{x}}^1 & \cdots & \tilde{\mathbf{x}}^T \end{bmatrix} = \sum_{i=1}^{N_{st}} \pi_i \hat{\mathbf{x}}_i(\boldsymbol{\mu}) \in \mathcal{ST} \subseteq \mathbb{R}^N \otimes \mathbb{R}^T$$



- Spatial dimension reduced
- Temporal dimension reduced
- Additional approximation

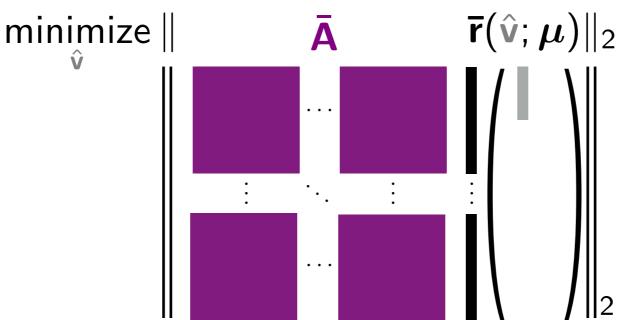
Space-time LSPG projection

LSPG



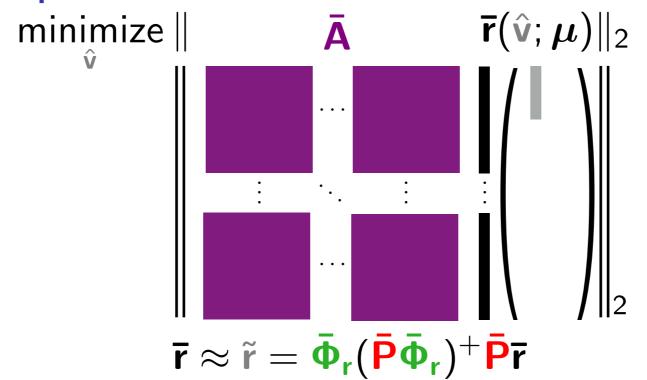
ST-LSPG

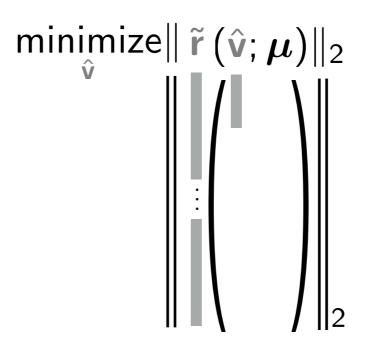
$$\bar{\mathbf{r}}(\hat{\mathbf{v}}; \boldsymbol{\mu}) := \begin{bmatrix}
\mathbf{r}^{1} \left(\sum_{i=1}^{n_{st}} \pi_{i}(t^{1}) \hat{v}_{i}, \sum_{i=1}^{n_{st}} \pi_{i}(t^{0}) \hat{v}_{i}; \boldsymbol{\mu} \right) \\
\vdots \\
\mathbf{r}^{T} \left(\sum_{i=1}^{n_{st}} \pi_{i}(t^{T}) \hat{v}_{i}, \sum_{i=1}^{n_{st}} \pi_{i}(t^{T-1}) \hat{v}_{i}, \dots, \sum_{i=1}^{n_{st}} \pi_{i}(t^{T-k}) \hat{v}_{i}; \boldsymbol{\mu} \right)
\end{bmatrix}$$



- + applicable to general nonlinear dynamical systems
- prohibitive cost: minimizing residual over all space and time

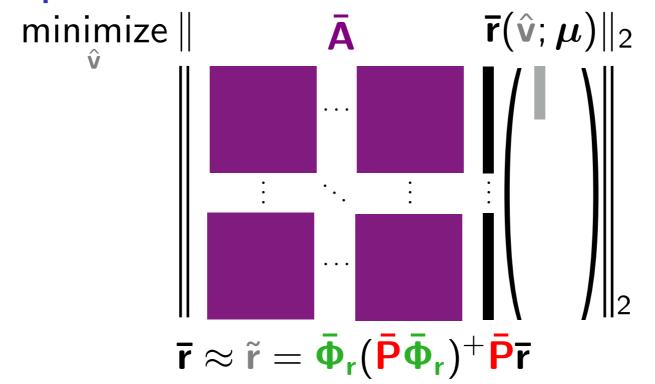
ST-LSPG hyper-reduction

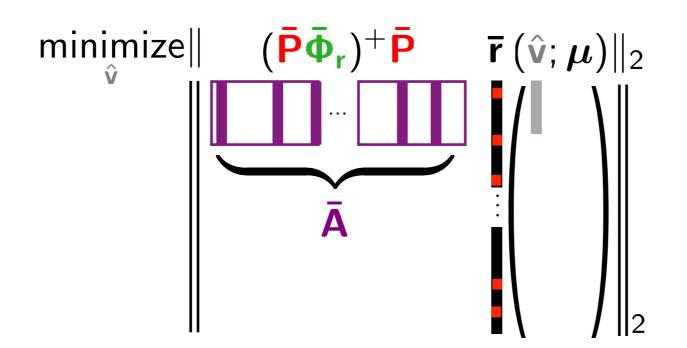




34

ST-LSPG hyper-reduction



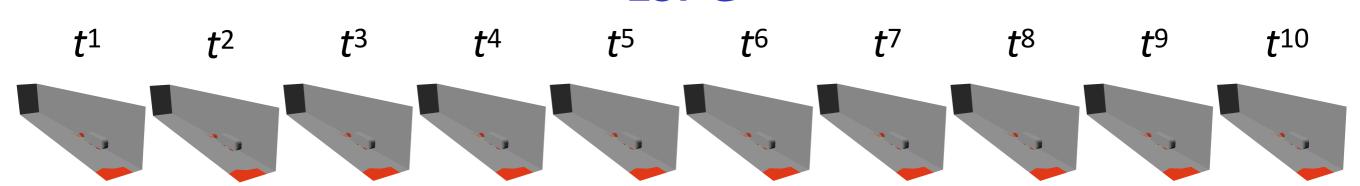


+ Residual computed at a few space-time degrees of freedom

34

Sample mesh

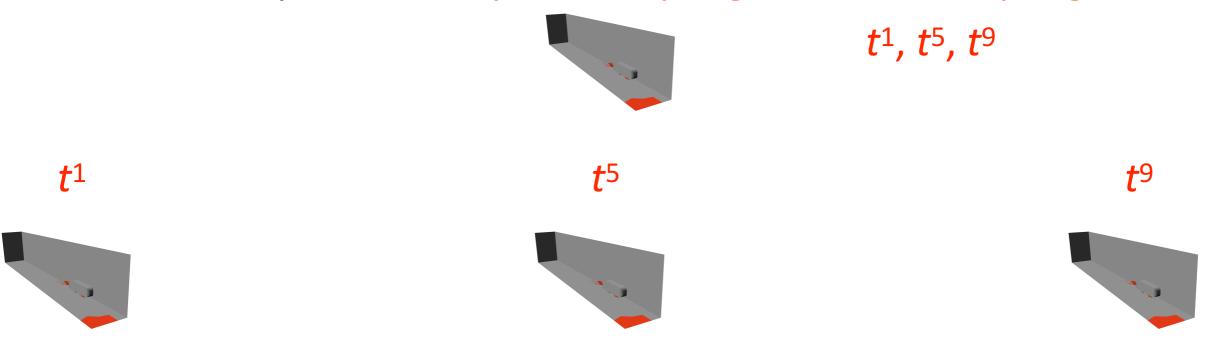
LSPG



Residual computed at a few spatial degrees of freedom, all time instances

ST-LSPG

• P: Kronecker product of space sampling and time sampling



+ Residual computed at a few space—time degrees of freedom

Error bound

LSPG

- Sequential solves: sequential accumulation of time-local errors

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \underbrace{\max_{j \in \{1, \dots, n\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{\mathsf{LSPG}}^{j}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}}_{\text{worst best time-local approximation residual}}$$

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

+ Single solve: no sequential error accumulation

$$\|\mathbf{x}^n - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{ST-LSPG}}^n\|_2 \leq \sqrt{T}(1+\Lambda) \underbrace{\min_{\mathbf{w} \in \mathcal{ST}} \max_{j \in \{1,...,T\}} \|\mathbf{x}^n - \mathbf{w}^n\|_2}_{}$$

best space-time approximation error

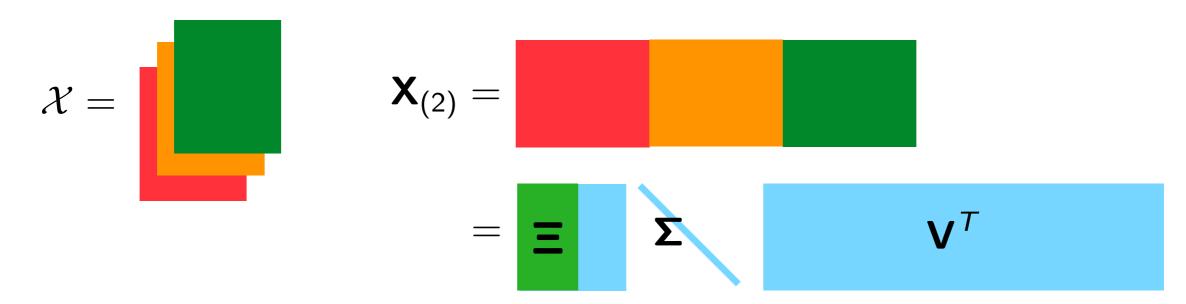
36

- + Stability constant: polynomial growth in time with degree 3/2
- + bounded by best space—time approximation error

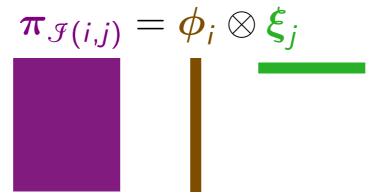
How to construct space-time trial basis $\{m{\pi}_i\}_{i=1}^{n_{
m st}}$ from snapshot data?

Algorithm

- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Compute truncated high-order SVD (T-HOSVD)
- 3. *Reduction:* Solve space—time LSPG ROM for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$



= columns are principal components of the **temporal** simulation data



- + extracts multiple space—time basis vectors from each training simulation
- Experiments: for fixed error, ST-LSPG almost 100X faster than LSPG

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015*; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

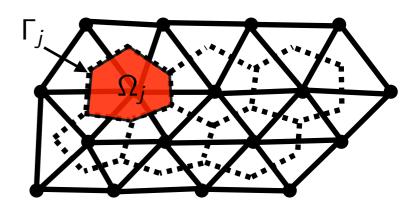
Collaborators: Youngsoo Choi (Sandia), Syuzanna Sargsyan (UW)

* Featured Article, SIAM J Sci Comp, 2015

Finite-volume method

$$ODE: \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

$$x_{\mathcal{I}(i,j)}(t) = \frac{1}{|\Omega_j|} \int_{\Omega_i} u_i(\vec{x}, t) d\vec{x}$$



average value of conserved variable i over control volume j

$$f_{\mathcal{I}(i,j)}(\mathbf{x},t) = -\frac{1}{|\Omega_j|} \int_{\Gamma_j} \underbrace{\mathbf{g}_i(\mathbf{x};\vec{x},t)}_{\text{flux}} \cdot \mathbf{n}_j(\vec{x}) \, d\vec{s}(\vec{x}) + \frac{1}{|\Omega_j|} \int_{\Omega_j} \underbrace{\mathbf{s}_i(\mathbf{x};\vec{x},t)}_{\text{source}} \, d\vec{x}$$

• flux and source of conserved variable i within control volume j

$$r_{\mathcal{I}(i,j)} = \frac{dx_{\mathcal{I}(i,j)}}{dt}(t) - f_{\mathcal{I}(i,j)}(\mathbf{x},t)$$

rate of conservation violation of variable i in control volume j

O
$$\Delta E$$
: $\mathbf{r}^n(\mathbf{x}^n) = 0$, $n = 1, ..., N$

$$r_{\mathcal{I}(i,j)}^n = x_{\mathcal{I}(i,j)}(t^{n+1}) - x_{\mathcal{I}(i,j)}(t^n) + \int_{t^n}^{t^{n+1}} f_{\mathcal{I}(i,j)}(\mathbf{x},t) dt$$

conservation violation of variable i in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods

Galerkin and LSPG violate conservation

Galerkin

$$\Phi \frac{d\hat{\mathbf{x}}}{dt} (\Phi \hat{\mathbf{x}}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{arg min}} \|\mathbf{r}(\mathbf{v}, \Phi \hat{\mathbf{x}}, t)\|_{2}$$

 Minimize sum of squared conservation-violation rates

LSPG

$$\mathbf{\Phi}\hat{\mathbf{x}}^n = \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{arg min}} \|\mathbf{r}^n(\mathbf{v})\|_2$$

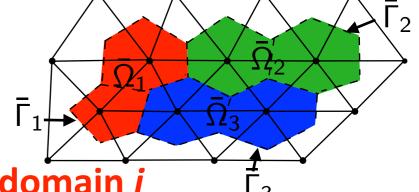
- Minimize sum of squared
 conservation violations over
 time step n
- Neither ensures conservation!
- Goal: devise projections that enforce conservation over subdomains

Conservative model reduction for finite-volume models [C., Choi, Sargsyan, 2018]

Finite-volume method over subdomains

$$ODE: \bar{\mathbf{C}} \frac{d\mathbf{x}}{dt} = \bar{\mathbf{C}} \mathbf{f}(\mathbf{x}, t)$$

$$\bar{c}_{\bar{\mathcal{I}}(i,j),\mathcal{I}(\ell,k)} = |\Omega_k|/|\Omega_j|\delta_{i\ell}I(\Omega_k \subseteq \Omega_j)$$



performs summation over control volumes within subdomain j

$$[\bar{\mathbf{C}}\mathbf{x}(t)]_{\bar{\mathcal{I}}(i,j)}(\mathbf{x},t;\boldsymbol{\mu}) = \frac{1}{|\bar{\Omega}_j|} \int_{\bar{\Omega}_j} \mathbf{u}_i(\vec{x},t;\boldsymbol{\mu}) \, d\vec{x}$$

average value of conserved variable i over subdomain j

$$[\bar{\mathbf{C}}\mathbf{f}(\mathbf{x},t)]_{\bar{\mathcal{I}}(i,j)} = -\frac{1}{|\bar{\Omega}_{j}|} \int_{\bar{\Gamma}_{j}} \underbrace{\mathbf{g}_{i}(\mathbf{x};\vec{x},t)}_{\text{flux}} \cdot \bar{\mathbf{n}}_{j}(\vec{x}) \, d\vec{s}(\vec{x}) + \frac{1}{|\bar{\Omega}_{j}|} \int_{\bar{\Omega}_{j}} \underbrace{\mathbf{s}_{i}(\mathbf{x};\vec{x},t)}_{\text{source}} \, d\vec{x}$$

flux and source of conserved variable i within subdomain j

$$[\bar{\mathbf{C}}\mathbf{r}]_{\bar{\mathcal{I}}(i,j)} = d[\bar{\mathbf{C}}\mathbf{x}(t)]_{\bar{\mathcal{I}}(i,j)}/dt - [\bar{\mathbf{C}}\mathbf{f}(\mathbf{x},t)]_{\bar{\mathcal{I}}(i,j)}$$

rate of conservation violation of conserved variable i in subdomain j

O
$$\Delta E$$
: $\bar{\mathbf{C}}\mathbf{r}^n(\mathbf{x}^n) = \mathbf{0}, \ n = 1, ..., T$

$$[\bar{\mathbf{C}}\mathbf{r}^n]_{\bar{\mathcal{I}}(i,j)} = [\bar{\mathbf{C}}\mathbf{x}(t^{n+1})]_{\bar{\mathcal{I}}(i,j)} - [\bar{\mathbf{C}}\mathbf{x}(t^n)]_{\bar{\mathcal{I}}(i,j)} + \int_{t^n}^{t^{n+1}} [\bar{\mathbf{C}}\mathbf{f}(\mathbf{x},t)]_{\bar{\mathcal{I}}(i,j)} dt$$

conservation violation of conserved variable i in subdomain j over time step n

Conservative model reduction

Conservative Galerkin

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\text{minimize}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}, t)\|_2$$

subject to
$$\bar{\mathbf{C}}\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}},\mathbf{\Phi}\hat{\mathbf{x}},t)=\mathbf{0}$$

 Minimize sum of squared conservation-violation rates subject to zero conservationviolation rates over subdomains

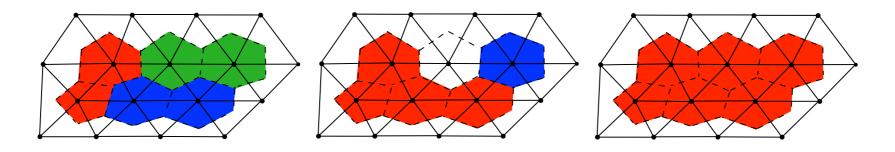
Conservative LSPG

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\mathsf{minimize}} \ \|\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}})\|_2$$

subject to
$$\bar{\mathbf{C}}\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}}) = \mathbf{0}$$

Minimize sum of squared conservation violations over time step n subject to zero conservation violations over time step n over subdomains

+ Conservation enforced over prescribed subdomains



Conservative model reduction

Conservative Galerkin

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\text{minimize}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}, t)\|_2$$

subject to
$$\overline{\mathbf{Cr}}(\mathbf{\Phi}\hat{\mathbf{v}},\mathbf{\Phi}\hat{\mathbf{x}},t)=\mathbf{0}$$

 Minimize sum of squared conservation-violation rates subject to zero conservationviolation rates over subdomains

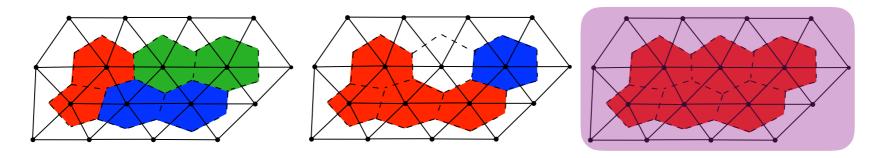
Conservative LSPG

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\mathsf{minimize}} \ \|\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}})\|_2$$

subject to
$$\bar{\mathbf{C}}\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}}) = \mathbf{0}$$

Minimize sum of squared conservation violations over time step n subject to zero conservation violations over time step n over subdomains

+ Conservation enforced over prescribed subdomains



Experiments: enforcing global conservation can reduce error by 10X

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models

 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborator: Kookjin Lee (Sandia)

Model reduction can work well...

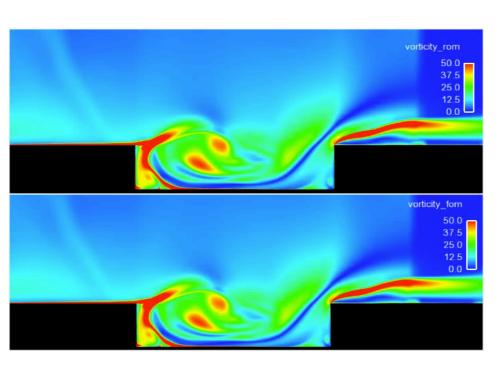
vorticity field

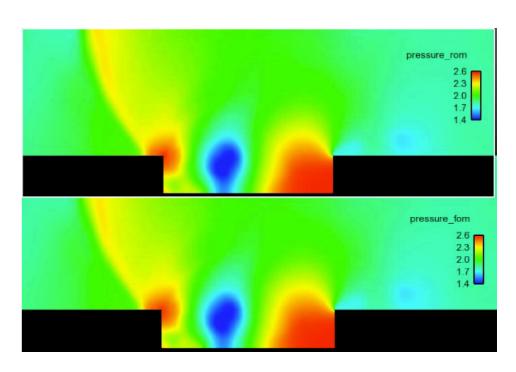
pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P} \mathbf{\Phi}_r)^+ \mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores





- + 229x savings in core-hours
- + < 1% error in time-averaged drag

... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

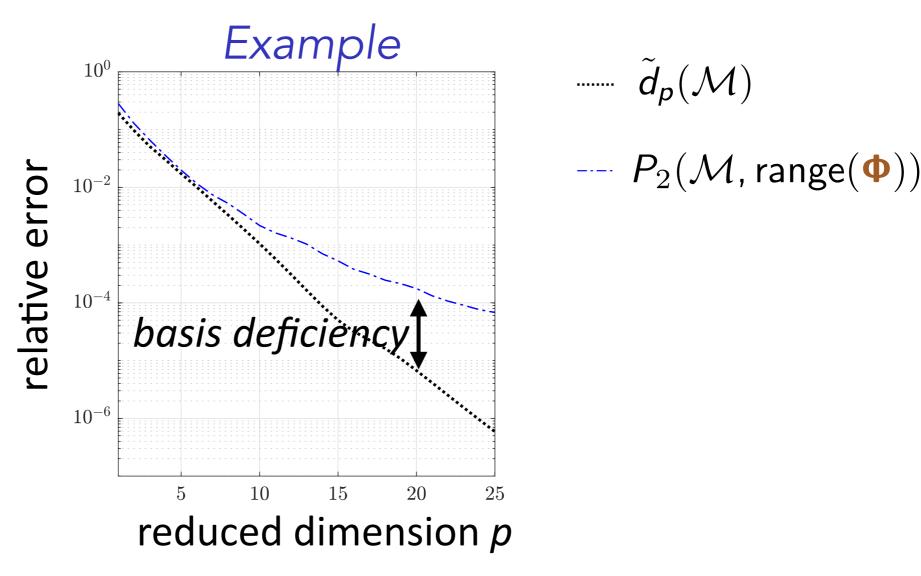
- 1) Linear-subspace assumption is strong
- 2) Accuracy limited by content of Φ

$$d_p(\mathcal{M}) := \inf_{\mathcal{S}_p} P_{\infty}(\mathcal{M}, \mathcal{S}_p) \qquad P_{\infty}(\mathcal{M}, \mathcal{S}_p) := \sup_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_p} \|\mathbf{x} - \mathbf{y}\|$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

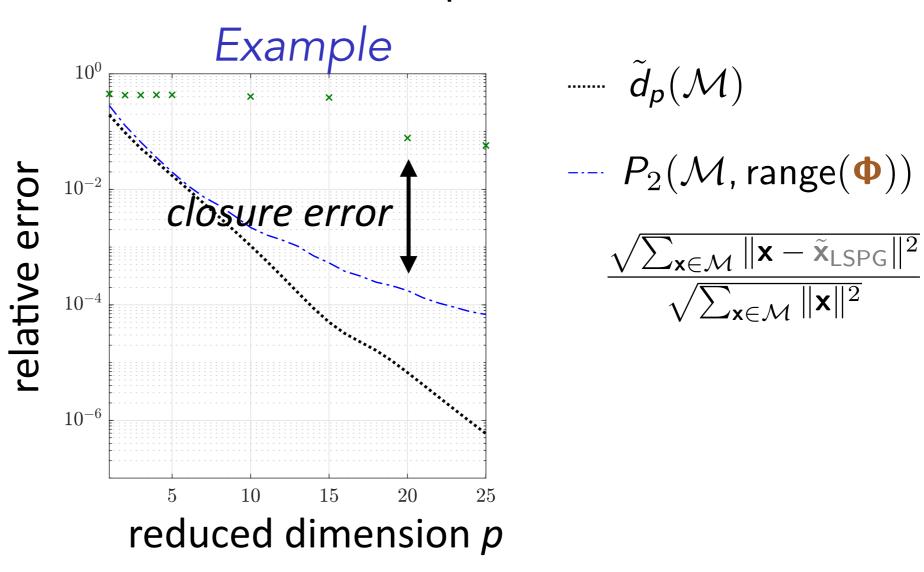
$$\tilde{d}_{p}(\mathcal{M}) := \inf_{\mathcal{S}_{p}} P_{2}(\mathcal{M}, \mathcal{S}_{p}) \qquad P_{2}(\mathcal{M}, \mathcal{S}_{p}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_{p}} \|\mathbf{x} - \mathbf{y}\|^{2} / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^{2}}$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces



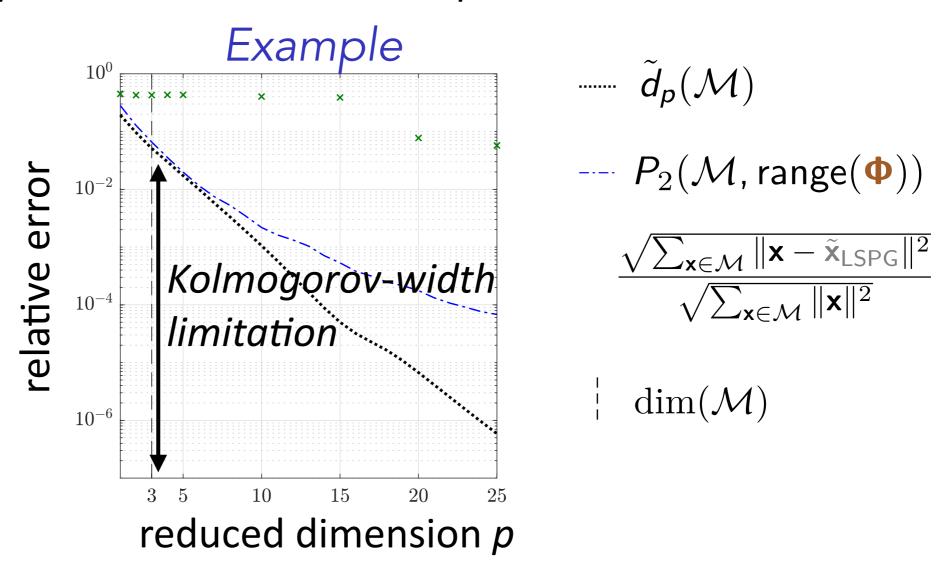
$$\tilde{d}_{p}(\mathcal{M}) := \inf_{\mathcal{S}_{p}} P_{2}(\mathcal{M}, \mathcal{S}_{p}) \qquad P_{2}(\mathcal{M}, \mathcal{S}_{p}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_{p}} \|\mathbf{x} - \mathbf{y}\|^{2} / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^{2}}$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \ \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all *p*-dimensional linear subspaces



$$\tilde{d}_{p}(\mathcal{M}) := \inf_{\mathcal{S}_{p}} P_{2}(\mathcal{M}, \mathcal{S}_{p}) \qquad P_{2}(\mathcal{M}, \mathcal{S}_{p}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_{p}} \|\mathbf{x} - \mathbf{y}\|^{2} / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^{2}}$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \ \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all *p*-dimensional linear subspaces



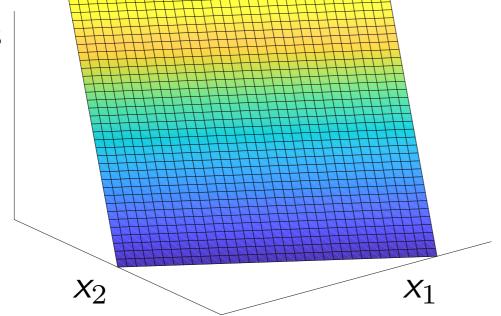
- Kolmogorov-width limitation: significant error for $p = \dim(\mathcal{M})$
 - Goal: overcome limitation via projection onto a nonlinear manifold

Nonlinear trial manifold

Linear trial subspace

$$\mathsf{range}(\mathbf{\Phi}) := \{\mathbf{\Phi}\hat{\mathbf{x}} \,|\, \hat{\mathbf{x}} \in \mathbb{R}^p\}$$

example x_3



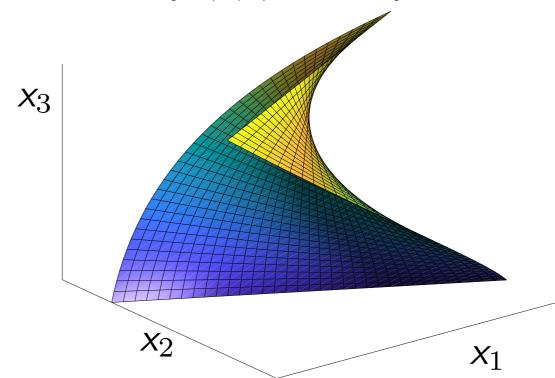
state

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t) \in \mathsf{range}(\mathbf{\Phi})$$

velocity $\frac{d\mathbf{x}}{dt} \approx \frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} \in \text{range}(\mathbf{\Phi})$ $\frac{d\mathbf{x}}{dt} \approx \frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}} \mathcal{S}$

Nonlinear trial manifold

$$\mathcal{S} := \{ \mathbf{g}(\hat{\mathbf{x}}) \, | \, \hat{\mathbf{x}} \in \mathbb{R}^p \}$$



$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$

+ manifold has general structure

$$\frac{d\mathbf{x}}{dt} pprox \frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}} \mathcal{S}$$

Manifold Galerkin and LSPG projection

Linear-subspace ROM

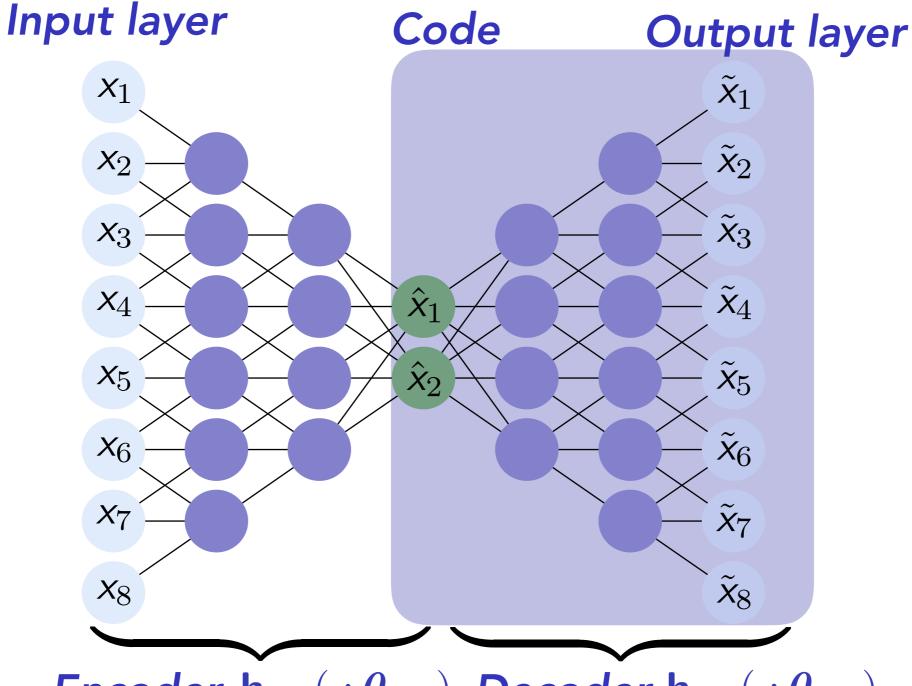
Nonlinear-manifold ROM

47

+ Satisfy residual-minimization properties

How to construct manifold $\mathcal{S}:=\{\mathbf{g}(\hat{\mathsf{x}})\,|\,\hat{\mathsf{x}}\in\mathbb{R}^p\}$ from snapshot data?

Deep autoencoders



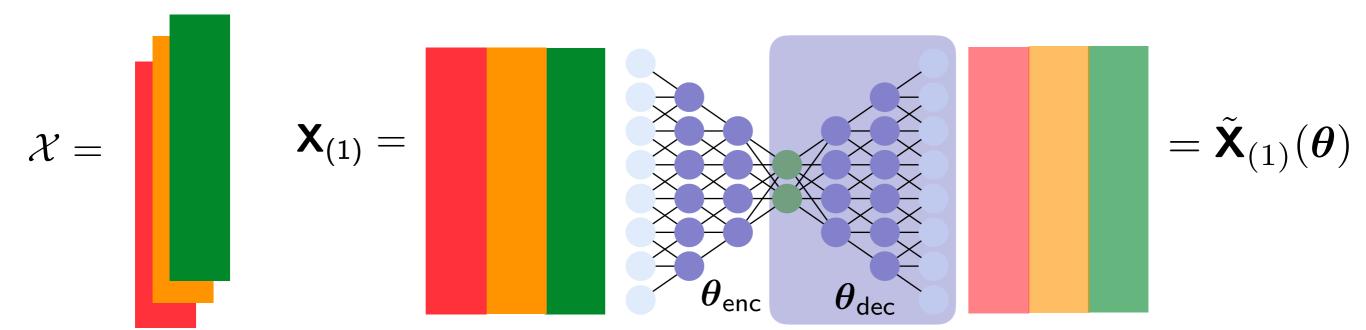
Encoder $h_{enc}(\cdot; \boldsymbol{\theta}_{enc})$ Decoder $h_{dec}(\cdot; \boldsymbol{\theta}_{dec})$

$$\tilde{\mathbf{x}} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}_{\mathsf{dec}}) \circ \mathbf{h}_{\mathsf{enc}}(\mathbf{x}; \boldsymbol{\theta}_{\mathsf{enc}})$$

+ If $ilde{\mathbf{x}} pprox \mathbf{x}$ for parameters $m{ heta}_{ ext{dec}}^\star$, $\mathbf{g} = \mathbf{h}_{ ext{dec}}(\cdot;m{ heta}_{ ext{dec}}^\star)$ produces an accurate manifold

Algorithm

- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. *Reduction:* Solve manifold Galerkin or LSPG for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$



- Compute $m{ heta}^\star$ by approximately solving minimize $\|\mathbf{X}_{(1)} \ddot{\mathbf{X}}_{(1)}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\text{dec}}(\cdot; \boldsymbol{\theta}_{\text{dec}}^{\star})$
- + Same snapshot data

Numerical results

1D Burgers' equation

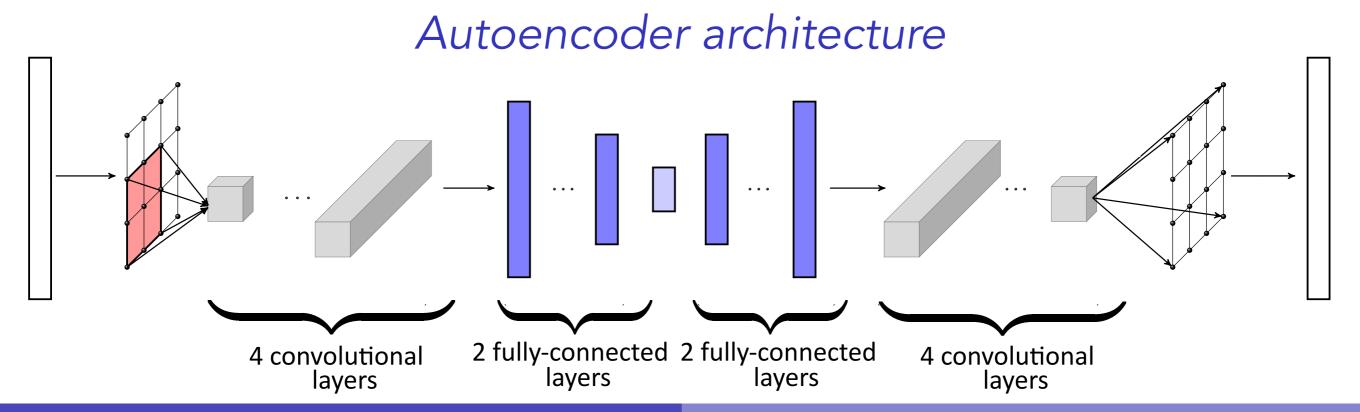
$$\frac{\partial w(x,t;\boldsymbol{\mu})}{\partial t} + \frac{\partial f(w(x,t;\boldsymbol{\mu}))}{\partial x} = 0.02e^{\alpha x} \quad \frac{\partial \mathbf{w}(\vec{x},t;\boldsymbol{\mu})}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x},t;\boldsymbol{\mu}))$$

2D reacting flow

$$egin{aligned} rac{\partial \mathbf{w}(ec{x},\,t;oldsymbol{\mu})}{\partial t} &=
abla \cdot (\kappa
abla \mathbf{w}(ec{x},\,t;oldsymbol{\mu})) \ &- \mathbf{v} \cdot
abla \mathbf{w}(ec{x},\,t;oldsymbol{\mu}) + \mathbf{q}(\mathbf{w}(ec{x},\,t;oldsymbol{\mu});oldsymbol{\mu}) \end{aligned}$$

- μ : α , inlet boundary condition
- Spatial discretization: finite volume
- Time integrator: backward Euler

- μ : two terms in reaction
- * Spatial discretization: finite difference
- Time integrator: BDF2

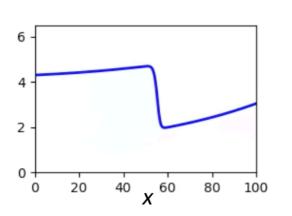


Manifold LSPG outperforms optimal linear subspace

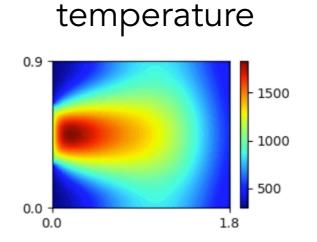
1D Burgers' equation

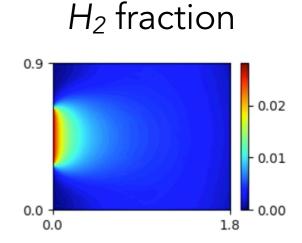
2D reacting flow

high-fidelity model

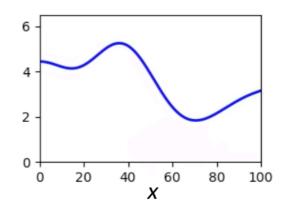


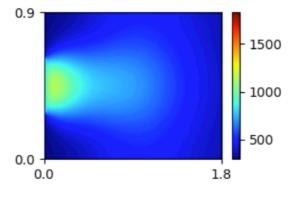
conserved variable

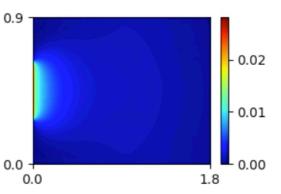




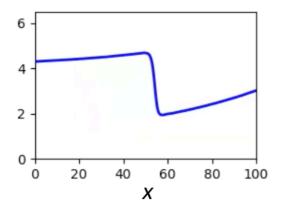
POD-LSPG p=5

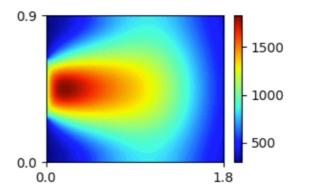


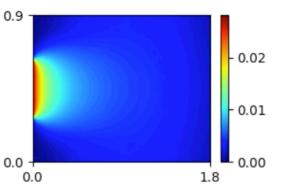




Manifold LSPG p=5

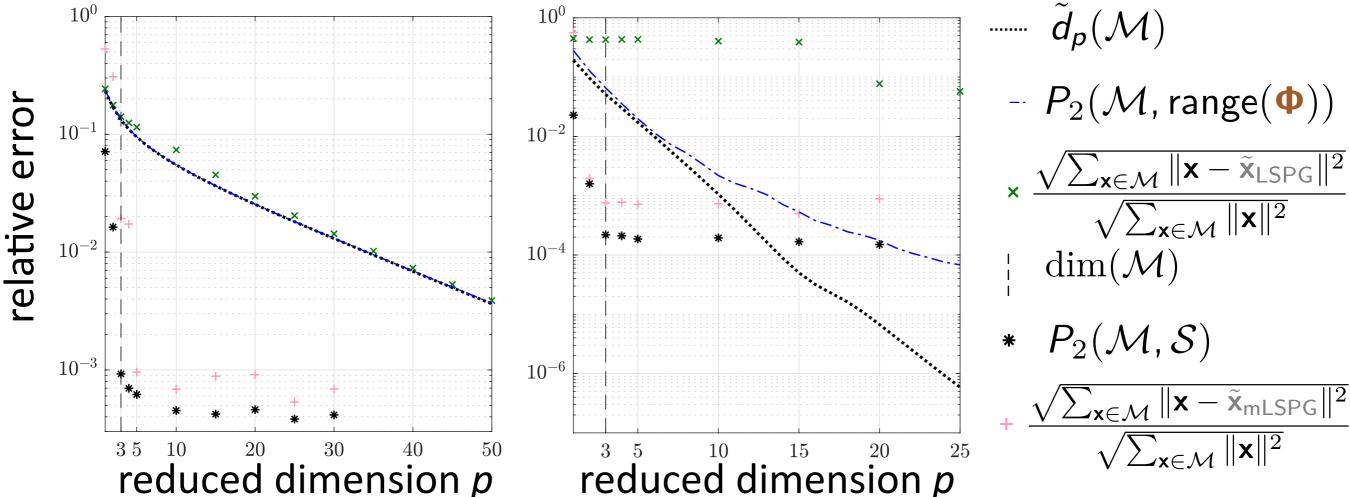






Method overcomes Kolmogorov-width limitation

1D Burgers' equation 2D reacting flow



- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
- + Method overcomes Kolmogorov-width limitation

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Model reduction can work well...

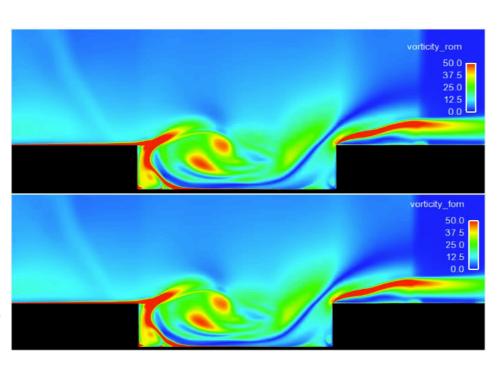
vorticity field

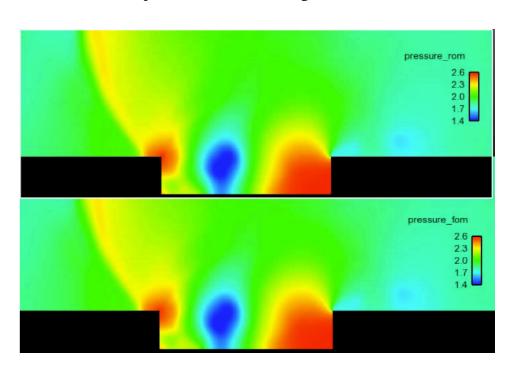
pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P} \mathbf{\Phi}_r)^+ \mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores





- + 229x savings in core-hours
- + < 1% error in time-averaged drag

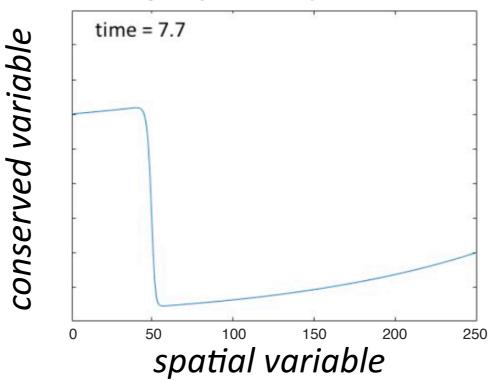
... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- 1) Linear-subspace assumption is strong
- 2) Accuracy limited by content of ϕ

Illustration: inviscid 1D Burgers' equation

high-fidelity model



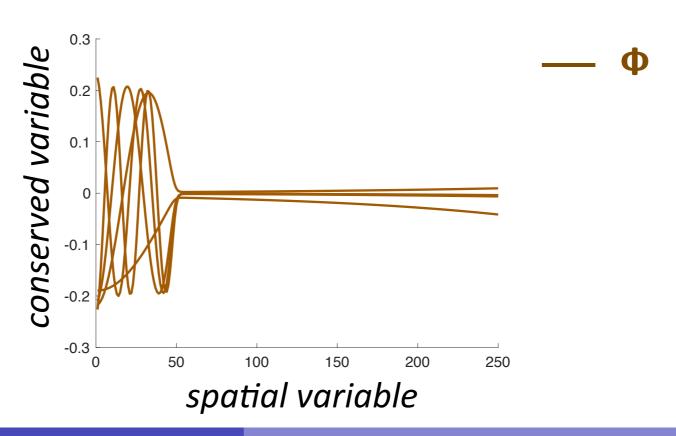
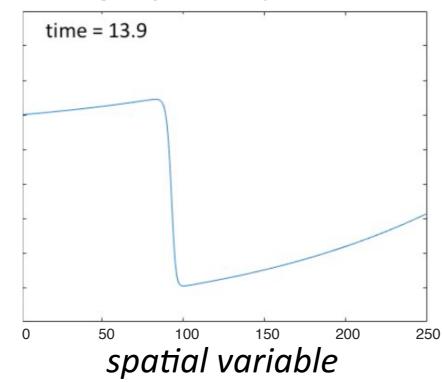
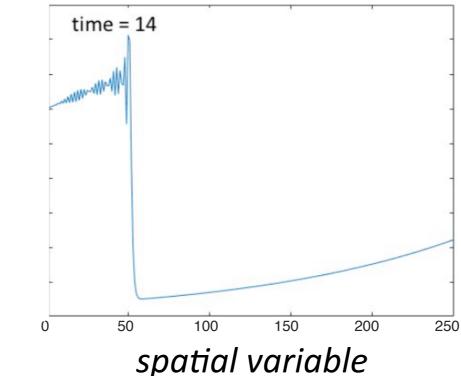


Illustration: inviscid 1D Burgers' equation

high-fidelity model



reduced-order model

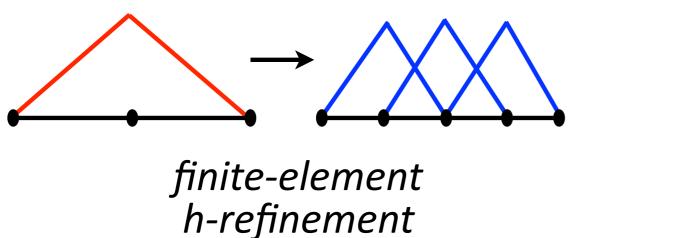


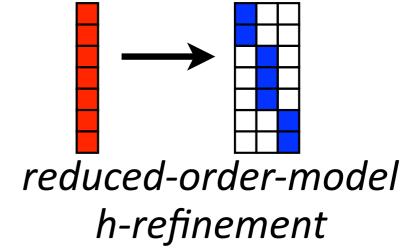
reduced-order model inaccurate when Φ insufficient

Main idea [C., 2015]

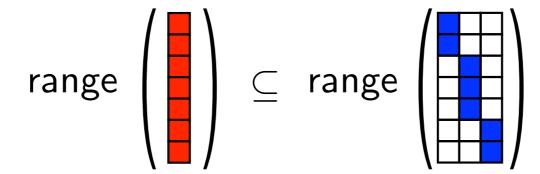
Model-reduction analogue to mesh-adaptive h-refinement

'Split' basis vectors

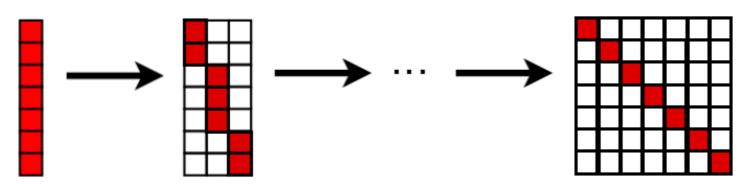




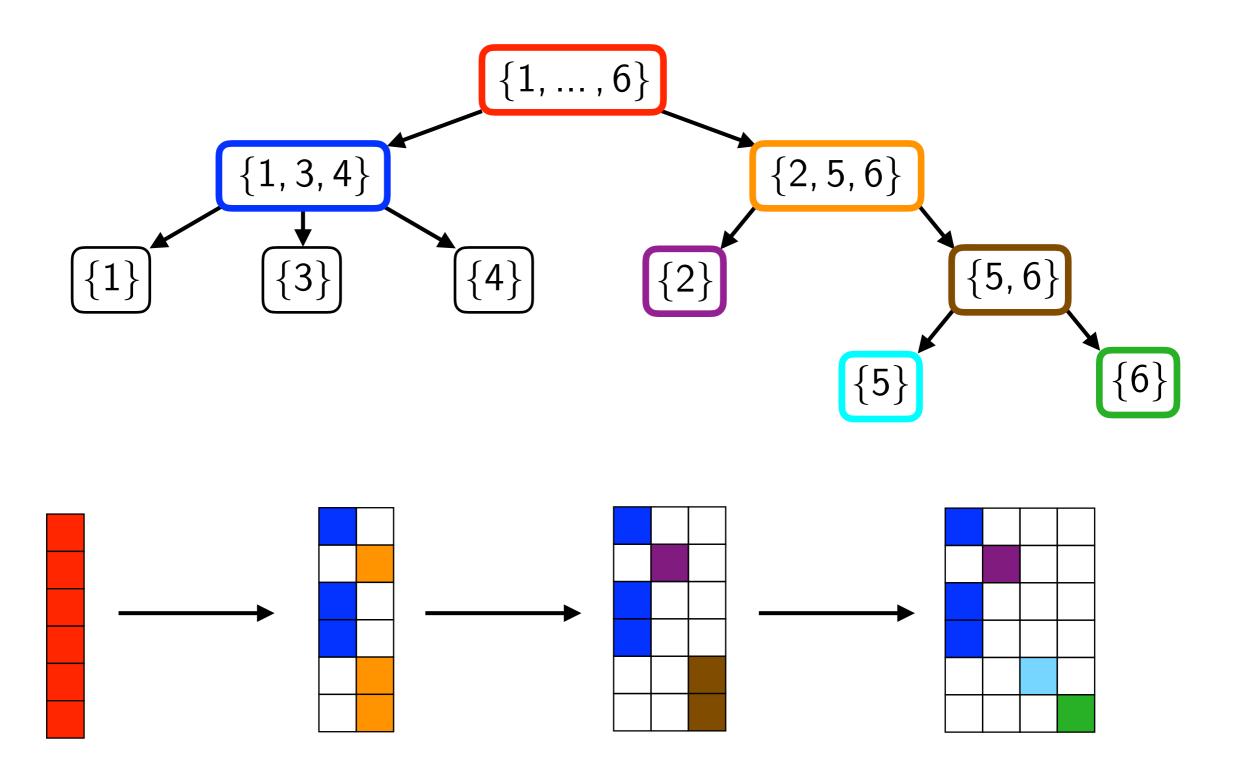
Generate hierarchical subspaces



Converges to the high-fidelity model



Refinement tree encodes splitting



Nonlinear model reduction Kevin Carlberg

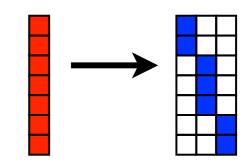
58

Refinement tree requirements

Theorem [C., 2015]

h-adaptivity generates a hierarchy of subspaces if:

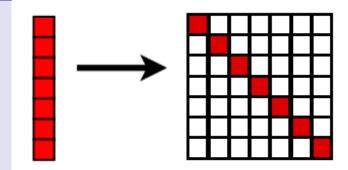
- 1. children have disjoint support, and
- 2. the union of the children elements is equal to the parent elements



Theorem [C., 2015]

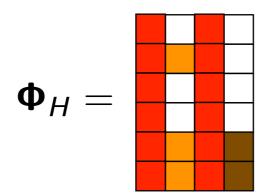
h-adaptivity converges to the high-fidelity model if:

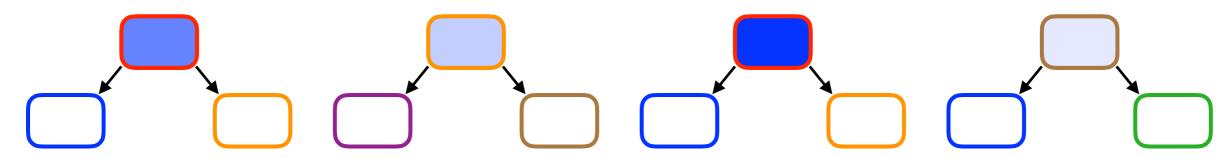
- 1. every element has a nonzero entry in >1 basis vector,
- 2. the root node includes all elements, and
- 3. each element has a leaf node.



Tree-construction algorithm

- Identifies hierarchy of correlated states via k-means clustering
- + Ensures theorem conditions are satisfied



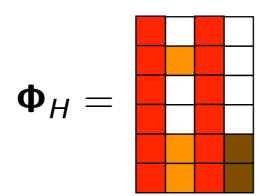


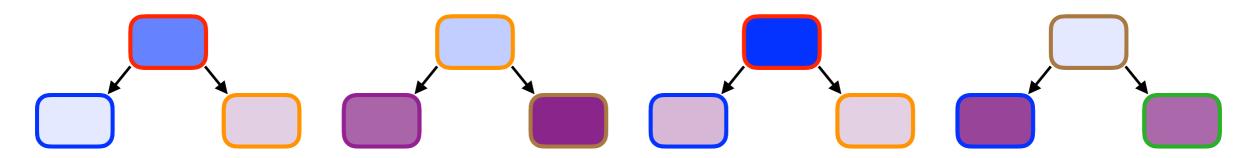
while
$$|\hat{\delta}^n| > \epsilon$$

1. Solve: dual solve with coarse basis

$$\mathbf{y}_{H}^{n} = \underset{\hat{\mathbf{v}}}{\operatorname{argmin}} \| \frac{\partial \mathbf{r}^{n}}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \mathbf{\Phi}_{H} \hat{\mathbf{v}} + \frac{\partial q}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \|_{2}$$

60



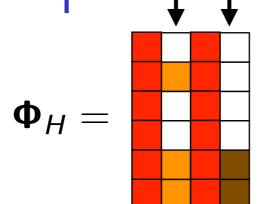


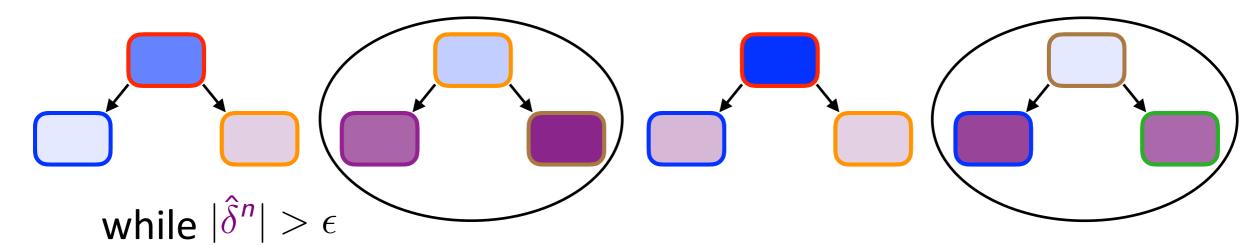
while
$$|\hat{\delta}^n| > \epsilon$$

1. Solve: dual solve with coarse basis

$$\mathbf{y}_{H}^{n} = \operatorname{argmin} \| \frac{\partial \mathbf{r}^{n}}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \mathbf{\Phi}_{H} \hat{\mathbf{v}} + \frac{\partial q}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \|_{2}$$

2. **Estimate:** prolongate and compute fine error indicators $\Delta_i^n = |(\mathbf{I}_H^h \mathbf{y}_H^n)_i^T [\mathbf{\Phi}_h]_i^T \mathbf{r}^n (\mathbf{\Phi}_H \hat{\mathbf{x}}_H^n)|$

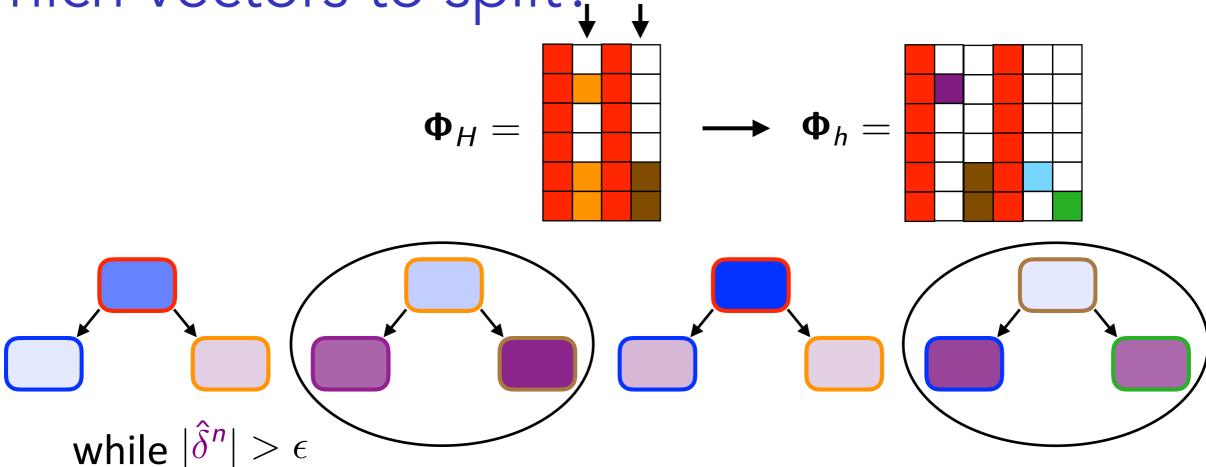




1. Solve: dual solve with coarse basis

$$\mathbf{y}_{H}^{n} = \operatorname{argmin} \| \frac{\partial \mathbf{r}^{n}}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \mathbf{\Phi}_{H} \hat{\mathbf{v}} + \frac{\partial q}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \|_{2}$$

- 2. **Estimate:** prolongate and compute fine error indicators $\Delta_i^n = |(\mathbf{I}_H^h \mathbf{y}_H^n)_i^T [\mathbf{\Phi}_h]_i^T \mathbf{r}^n (\mathbf{\Phi}_H \hat{\mathbf{x}}_H^n)|$
- 3. **Mark**: identify basis vectors to refine $\{j \mid \sum_{i \in C(j)} \Delta_i^n > \tau\}$



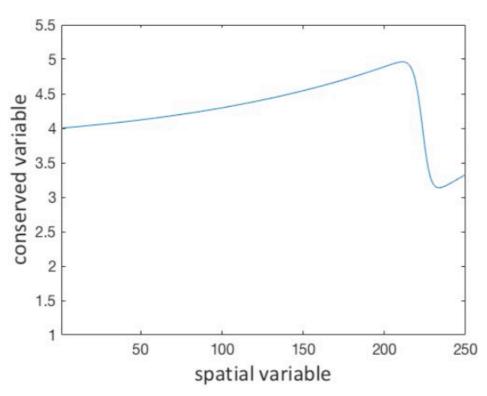
1. Solve: dual solve with coarse basis

$$\mathbf{y}_{H}^{n} = \operatorname{argmin} \|\frac{\partial \mathbf{r}^{n}}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \mathbf{\Phi}_{H} \hat{\mathbf{v}} + \frac{\partial q}{\partial \mathbf{x}} (\mathbf{\Phi}_{H} \hat{\mathbf{x}}_{H}^{n})^{T} \|_{2}$$

- 2. **Estimate:** prolongate and compute fine error indicators $\Delta_i^n = |(\mathbf{I}_H^h \mathbf{y}_H^n)_i^T [\mathbf{\Phi}_h]_i^T \mathbf{r}^n (\mathbf{\Phi}_H \hat{\mathbf{x}}_H^n)|$
- 3. **Mark**: identify basis vectors to refine $\{j \mid \sum_{i \in C(i)} \Delta_i^n > \tau\}$
- 4. **Refine**: split identified basis vectors $i \in C(j)$
- 5. Compute solution with refined basis $\mathbf{x}_h^n = \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi}_h)}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{v})\|_2$

Illustration: inviscid 1D Burgers' equation

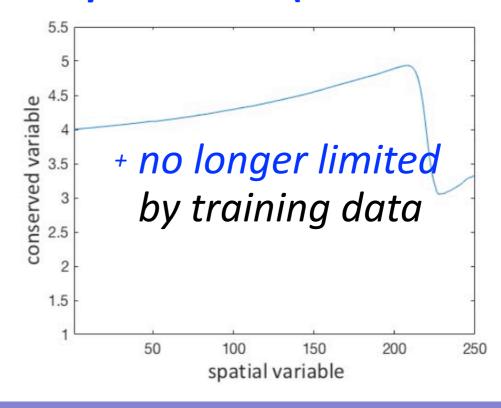
high-fidelity model



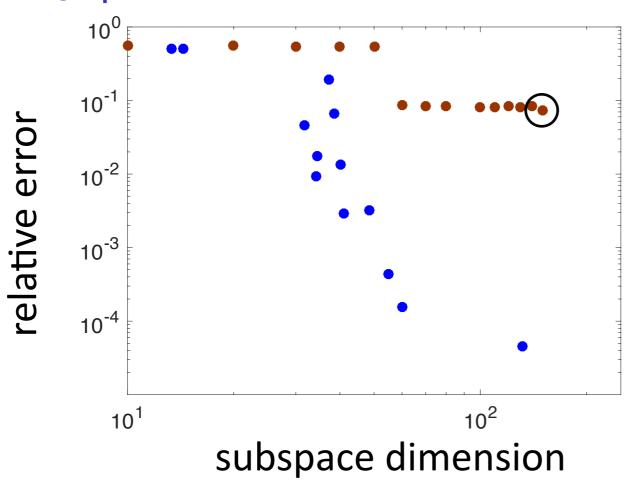
reduced-order model (dim 50)

5.5 5 4.5 3.5 2.5 2 1.5 50 100 150 200 250 spatial variable

h-adaptive ROM (mean dim 48.5)



h-adaptivity provides an accurate, low-dim subspace

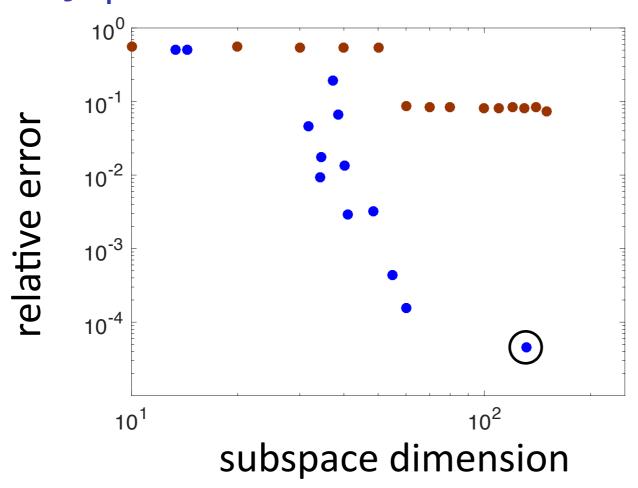


- reduced-order models
- h-adaptive ROMs

Reduced-order models

- minimum error 7.5%
- cannot overcome insufficient training data

h-adaptivity provides an accurate, low-dim subspace



- reduced-order models
- h-adaptive ROMs

Reduced-order models

- minimum error 7.5%
- cannot overcome insufficient training data

h-adaptive ROMs

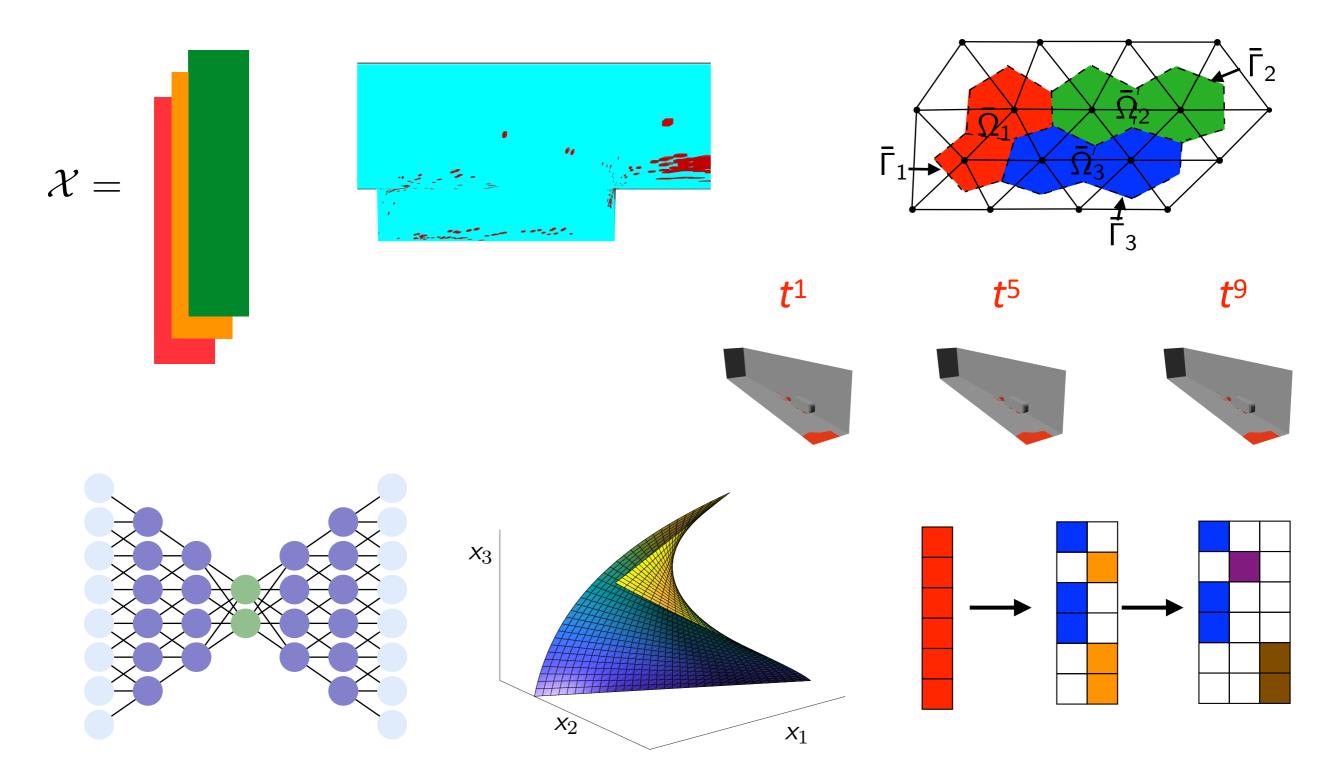
- + minimum error <0.01% with lower subspace dimension
- + can overcome insufficient training data without collecting more data
- + can satisfy any prescribed error tolerance

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Questions?



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525