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High-fidelity simulation
+Indispensable in aerospace applications
- Extreme-scale models required for high fidelity

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Time-critical applications

e rapid e uncertainty e structural health @ model predictive
design guantification monitoring control
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Computational barrier at NASA

El]l’ Nl-‘\ll ﬂOl’k Cimes HIGH-PERE. » ' /
Geniuses Wanted: NASA Challenges FAST COMPUTI INJ E H ﬂ LLENGE

Coders to Speed Up Its Supercomputer

“Despite tremendous progress made in the past few decades,
CFD tools are too slow for simulation of complex geometry flows...
[taking] from thousands to millions of computational core-hours.”

“To enable high-fidelity CFD for multi-disciplinary analysis and design,
the speed of computation must be increased by orders of magnitude.”

“The desired outcome is any approach that can

accelerate calculations by a factor of 10x to 1000x.”
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Approach: exploit simulation data

dx
dt
Time-critical problem: rapidly solve ODE for p € Dqyery

ODE: =f(x;t, ), x(0,) =xo(pt), te€]0, Thna], @D

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for g € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Diraining

Nonlinear model reduction Kevin Carlberg




Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational-cost savings

3. Structure preservation: preserves intrinsic physical properties

4. Robustness: guaranteed satisfaction of any accuracy requirement

5. Certification: accurately quantify the ROM error

Nonlinear model reduction Kevin Carlberg 5



Model reduction: existing approaches

Nonlinear dynamical systems: ineffective

* Proper orthogonal decomposition (POD)—Galerkin sirovich, 19871
- Inaccurate, unreliable: often unstable

- Not certified: error bounds grow exponentially in time

- Expensive: projection insufficient for speedup

- Structure not preserved: physical properties ignored
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

’ aCCUI‘acy: LS PG prOjeCtiOn [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
’ IOW cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

¢ StrUCture preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 2018
» robustness: h-adaptivity c, 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection (c, Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

' StrUCture preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 2018]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborators: Matthew Barone (Sandia), Harbir Antil (GMU)

* #2 most-cited paper, Int J Numer Meth Eng, 2011
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Training simulations: state tensor

dx
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining

number of

time steps T
+—>

A

number of
state variables N

<
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Training simulations: state tensor
dx

. — =f(xt,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining
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Tensor decomposition

dx
. =f(x t,
ODE ” (x; t, )

1. Training: Solve ODE for g € Diyaining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

|
c
M
<

\l
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Tensor decomposition

dx
. — =f(x:t,
ODE ” (x; t, )

1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

® columns are principal components of the spatial simulation data

How to integrate these data with the computational model?
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Previous state of the art: POD-Galerkin

d .
ODE: d—)t(:f(x;t,u) D .

3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

1. Reduce the number of unknowns 2. Reduce the number of equations

>”<t)—<bx(t) f(PX;t, 1) — ¢@
Galerkin ODE: E =o' f(dx;t, 1) |D ,'. ¢ 30
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Captive carry

o
oooooooo
p

*» Unsteady Navier—Stokes »Re=6.3x10® *» Mo

=0.6
Spatial discretization Temporal discretization
» 2nd-order finite volume » 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 1073
» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances
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High-tidelity model solution

vorticity field

pressure field
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Principal components
x(t) ~ ® x(1)
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principal component index

» Truncation preserves coarse spatiotemporal solution components

Nonlinear model reduction Kevin Carlberg



Galerkin performance

2.8
- high-fidelity:
_ dim 1.2x105
a —— Galerkin: dim 204
g_ 2 4 a2 LA NARA NR NA - Galerkin: dim 368
© 18 - = Galerkin: dim 564
) Jq =
» 20F A.Y
A A Y
()] .
S
Q |
1.6 | | | | | |
0 2 4 6 8 10 12

time
- Galerkin projection fails regardless of basis dimension
Can we construct a better projection?
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Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dx T (@3-
dt_(b (PX; t)

f(x; t)
| |
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Galerkin: time-continuous optimality

ODE Galerkin ODE
dx

dx
E:f(x;t) (D—_(b(bT ¢Xt)

+ Galerkin ODE solution: optimal in the minimum-residual sense:

dX
() X(x t) = argmin ||r(v,x; t)||>
dt vErange(®)
r(v,x;t) :=v — f(x; t)
OAE Galerkin OAE

r"(x")=0, n=1,..., T

k k
r"(x) := apx — AtBof(x; t") + Z ajx" — Atz Bf(x"; t")
j=1 j=1

- Galerkin OAE solution: not generally optimal in any sense

Nonlinear model reduction Kevin Carlberg



Residual minimization and time discretization

( LSPGOAE )
®x" = argmin |[r"(v)|]
vErange(®P)
\ n=1 .. T y

-

Ldt

dx

ODE

= f(x; t)

_J

time

discretization l

residual

minimization

-

OAE

r"(x") =0

kn:].,...,T)

residual
>

minimizan'on

~

g Galerkin ODE
ﬁ(x t) = argmin ||r(v X; t)||2
verange(‘b)

L w,

time
discretization

& r"(dx") =0

o n=1 ... T

4 Galerkin OAE A

_/

Least-squares Petrov—Galerkin (LSPG) projection (c. sou-Mosleh, Farhat, 2011]

Nonlinear model reduction

Kevin Carlberg
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LSPG performance

2.8
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pressure at probe
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time

+ LSPG is far more accurate than Galerkin

Nonlinear model reduction

Why?

Kevin Carlberg

high-fidelity:
dim 1.2x106

Galerkin: dim 204
Galerkin: dim 368

l - — Galerkin: dim 564

LSPG: dim 204

LSPG: dim 368

LSPG: dim 564




Error bound

If the following conditions hold:
1. f(+; t) is Lipschitz continuous with Lipschitz constant &
2. At is small enough such that 0 < h := |on| |Bo|kAt, then

n ¢ cn—/,
Ix" — ®xg |2 < —Hrc(¢ G)Hz+hZ!Oz (X777 — &% |2
(= 1 ,
. 1 .
X" — ®X['spgll2 < hmAerLSPG((DV)HZ_I_ Z!aewx” ' ¢Xf5|fGH2
{=1

+ LSPG sequentially minimizes the error bound

. . . Aty . _
[ispc(®9)l2 = [aol[|®(¥ - Xspg) — (X" — ®X[5pc) o, @V 7) = (X5 7))z
approx ancrement incr;;ent

Ensuring ® captures solution increments over At reduces LSPG error bound
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LSPG dependence on time step

» Shrinking At has two competing effects:
+ time-discretization error: smaller
- error bound: more difficult for & to resolve solution increments

—— dimension 204
| —— dimension 368 |
101 ; —— dimension 564 :

LSPG error
S

10°° 1077 107!
time step At

» Best LSPG accuracy: intermediate At balances these two effects
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LSPG dependence on time step

» Shrinking At has two competing effects:
+ time-discretization error: smaller
- error bound: more difficult for & to resolve solution increments

—— dimension 204
| —— dimension 368 |
101 ; —— dimension 564 :

LSPG error
S

1077 /

10°° 1077 10~1
time step At

» Best LSPG accuracy: intermediate At balances these two effects
» Higher-dimension ®: can capture solution increments over smaller At
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Limiting equivalence

Galerkin and LSPG projection are equivalent in the limit At — 0.

—— dimension 204
| —— dimension 368 |
_ 1071} —— dimension 564 .
S 7 |
p -
-
S |
O 107°}
D_ I
(Vg
-1 ,
1072 |
I h
04—
1075 107° 10"
time step At

Explains poor Galerkin accuracy: equivalent to LSPG as At — 0
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
> IOW cost: Sample mESh [C., Farhat, Cortial, Amsallem, 2013*]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborators: Julien Cortial (Stanford), Charbel Farhat (Stanford)

* #2 most-cited paper, ] Comp Phys, 2013
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Wall-time problem

2.87
- high-fidelity:
i ‘ dim 1.2x106
2 | — Galerkin: dim 204
g_ 24 e LR MR IR A Galerkin: dim 368
© TN § - — Galerkin: dim 564
L wy
= R —— LSPG: dim 204
. - |
N 2.0 E “)
8 NI V] Rl WE Wy e LSPG: dim 368
!
- - LSPG: dim 564
]_6 | l l l l l
0 2 4 6 8 10 12
time
» High-fidelity simulation: 1 hour, 48 cores Why does this occur?
» Fastest LSPG simulation: 1.3 hours, 48 cores Can we fix it?
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize|| r"( ¢ V)||>
V'

Kevin Carlberg



COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize A (V)

v
.‘I)2

Can we introduce a weighting matrix A to make this less expensive?
» Training: collect residual tensor R”* while solving ODE for gt € Diaining
» Machine learning: compute residual PCA @, and sampling matrix P
» Reduction: compute regressmn apprommahon r" ~ 1" = & (Pd,)"Pr”

value

index
miniAmize
Vv

2
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize A (V)

v
.| 2

Can we introduce a weighting matrix A to make this less expensive?
» Training: collect residual tensor R”* while solving ODE for gt € Diaining

» Machine learning: compute residual PCA ®, and sampling matrix P
» Reduction: compute regression approximation r" ~ " = ® (P®,)" Pr”

value

Related:

> CO”OcaﬁOn [Ryckelynck, 2005;
Legresley, 2006; Astrid et al., 2008] « aa
min |Am VAS

» empirical interpolation g
[Barrault et al., 2004; Nguyen, Peraire, 2008;
Chaturantabut and Sorensen, 2010]

* FE subassembly
[An et al., 2008; Farhat et al., 2014]

>+ Only a few
elements of r"
must be computed

2

Kevin Carlberg
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Sa m p ‘ e m eSh [C., Farhat, Cortial, Amsallem, 2013]
minimize||(P®,)"Pr"(®V)||-

sample
mesh

+ HPC on a laptop
vorticity field

LSPG ROM with
A = (P(Dr)"l'P 20
32 min, 2 cores

vorticity fom

high-fidelity
5 hours, 48 cores g

+229x savings in core—hours
+< 1% error in time-averaged drag

Nonlinear model reduction Kevin Carlberg



Ah med bOdy [Ahmed, Ramm, Faitin, 1984]

1044 mm 369 LN AN AR AR
sy Sy Ay ‘
\Q g “g mm’?mf%é‘d“AﬂW
Q 42 I~ ‘"‘”ﬁ:ﬁ
II I RO i1 [T__£50 ‘h’flk‘» a
202 470 T Y f h&» qug
. . 163.5 K]
Ay S
1 ing
v

» Unsteady Navier—Stokes »*Re=4.3x 106 » M..=0.175

Spatial discretization Temporal discretization

» 2nd-order finite volume » 2nd-order BDF

* DES turbulence model » Time step At =8 x 10™s
» 1.7 x 10" degrees of freedom » 1.3 x 10° time instances

Nonlinear model reduction
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
LSPG ROM with A = (P®,)™P high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

+438x savings in core—hours
+Largest nonlinear dynamical system on which ROM has ever had success

Nonlinear model reduction Kevin Carlberg



Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
* [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborator: Youngsoo Choi (Sandia)
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Captive-carry results ic. saone, ani, 2017

vorticity field pressure field

GNAT ROM
32 min, 2 cores
spatial dim: 179 |
temporal dim: 458
high-fidelity
5 hours, 48 cores
spatial dim: 1.2M
temporal dim: 3,700

pressure_rom
26
23
20
17
14

pressure_fom

26

23

20

1T

14

+ 229X computational-cost reduction
+ 6,500X spatial-dimension reduction
- 8X temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?
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Reducing temporal complexity:

Space-time ROMs

» Reduced basis (urban, patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
» POD—Galerkin volkwein, Weiland, 2006; Baumann, Benner, Heiland, 2016]

» ODE-residual minimization (constantine, wang, 2012]

+ Reduction of time dimension

+ Linear time-growth of error bounds’

- Requires space—time finite element discretization”

- No hyper-reduction

- Only one space—time basis vector per training simulation

" Only reduced-basis methods

Nonlinear model reduction Kevin Carlberg



Goals

Preserve attractive properties of existing space—time ROMs
+ Reduce both space and time dimensions
+ Slow time-growth of error bound

Overcome shortcomings of existing space—-time ROMs

+ Applicability to general nonlinear dynamical systems
+ Hyper-reduction

+ Extract multiple space—time basis vectors from each training simulation

Space—time least-squares Petrov—Galerkin (ST-LSPG) projection (choiand c., 2019]

Nonlinear model reduction Kevin Carlberg



Spatial v. spatiotemporal trial

Full-order-model trial subspace
[xl--- ]G]RN@)RT

Spat:al trlal subspace
%' esS@RT CRY@R'

- + Spatial dimension reduced
- Temporal dimension large

Space—t:me trial subspace

Ngt

"1 ZTCX,(,U)GSC’JCIR{N®]RT

Nonlinear model reduction Kevin Carlberg

+ Spatial dimension reduced
+ Temporal dimension reduced
- Additional approximation




Space-time LSPG projection

LSP
mini\?mize A r"(p U, X" KR ) . n=1..,T
o | |
ST-LSPG
ot (O () 0, 30, m(e0) 0 )
r(Vp) =
e (i () D (T ) 0 2 (T T ) )

minimize >

Vv

A r(U; p)
. . | 2

+ applicable to general nonlinear dynamical systems
- prohibitive cost: minimizing residual over all space and time
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ST-LSPG hyper—reduc’uon

minimize >

| . .|

r~t=®,(Pd)" Pr

minimize r(v; p)||o

Nonlinear model reduction Kevin Carlberg



ST-LSPG hyper—reduc’uon

minimize >

| ..l
..l 2

Fr i = &, (P®,)" P

minimize (I?’CTDr)ﬂ5 r(v;p)l2

——

A :
| 2

+ Residual computed at a few space—time degrees of freedom

Nonlinear model reduction Kevin Carlberg



Sample mesh
LSPG

tl tZ t3 t4 t5 t6 t7 t8 t9 th
» Residual computed at a few spatial degrees of freedom, all time instances

ST-LSPG

» P: Kronecker product of space sampling and time sampling

‘ f, 5, 19

t1 t> td

-

-

-

+ Residual computed at a few space—time degrees of freedom
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Error bound

LSPG
- Sequential solves: sequential accumulation of time-local errors
n e 71(72)" exp(v3t”) . A
x" — dx > < max minl||r dv)||,
I = ®%spcll < T max minilepg(©9)]
N—— —.—_,

worst best time-local approximation residual

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

ST-LSPG

+ Single solve: no sequential error accumulation

x" — OX <VT(1+A) mi "W
| st-ispell2 < VT(LHA) min max X" — w7,

N——m—

best space-time approximation error

+ Stability constant: polynomial growth in time with degree 3/2
+ bounded by best space—time approximation error

How to construct space—time trial basis {7T i ?;tl from snapshot data?

Nonlinear model reduction Kevin Carlberg



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Compute truncated high-order SVD (T-HOSVD)

3. Reduction: Solve space—time LSPG ROM for 1t € Dquery \ Drraining

| I

= columns are principal components of the temporal simulation data
Ty(ij) —

+ extracts multiple space—time basis vectors from each training simulation
» Experiments: for fixed error, ST-LSPG almost 100X faster than LSPG
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

» structure preservat'ion [C., Tuminaro, Boggs, 2015*; Peng and C., 2017; C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborators: Youngsoo Choi (Sandia), Syuzanna Sargsyan (UW)

* Featured Article, SIAM J Sci Comp, 2015
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Finite-volume method

[ ODE: ax _ f(x;t)

dt
XI(,J) ’QJ‘/ U,(X t)dX

» average value of conserved variable j over control volume j

(% ) = ~ 15 / 8. (x: %, t) -n; (%) d5(%) - ‘éj /Qs,-(x;z, ) d%

A/—/ | N——
flux source
» flux and source of conserved variable i within control volume j
dXI(,
ree,j) = (t) — fri jy(x, t)

» rate of conservation violation of variable j in control volume
(OAE: r"(x)=0, n=1,..,N]

tn+1

(i) = xz(i jy(t") = xzi (7)) + friij)(x, t)dt

tn
» conservation violation of variable j in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods

Nonlinear model reduction Kevin Carlberg 39



Galerkin and LSPG violate conservation

Galerkin LSPG
dx (d)x t) = argmin |r(v, X, t)]> ®x" = argmin [[r"(v)||
vErange(®) vErange(®)
» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations over
time step n

- Neither ensures conservation!

» Goal: devise projections that enforce conservation over subdomains

Conservative model reduction for finite-volume models |c., choi, sargsyan, 2018]

Nonlinear model reduction Kevin Carlberg 40



Finite-volume method over subdomains
[ODE g _ Cf(x, t)

dt
Ef(i,j),I(E,k) — ’Qk’/mj’(siﬂ(ﬂk C Qj) B!
» performs summation over control volumes within subdomain j M3
_ 1 S .
Ex(lz;(x, ti1) = 5 [ wils, ) o5
‘QJ‘ QQ;
» average value of conserved variable i over subdomain j

CF(x, )]z = — = | g(x% ) #(%)d5®) + = [ s 1) dz

|QJ| H/—/ ‘ j| Q) ——

Aux source

» flux and source of conserved variable i within subdomain j

[C"]i(i,j) = d[éx(t)]f(i,j)/dt — [Cf(x, t)z)
» rate of conservation violation of conserved variable j in subdomain j

[ 0OAE: Cr"(x") =0, n=1,.., T |
tn—i—l
[CrTz,y = [Cx(t" )]z — [Cx(t")] 7 +/ [Cf(x, t)]7(; ) dt
tn
» conservation violation of conserved variable i in subdomain j over time step n

Nonlinear model reduction Kevin Carlberg 4]




Conservative model reduction

Conservative Galerkin Conservative LSPG
miggiﬁjpize (DU, ®X, t)]|2 migéi%pize (D) |2
‘subject to Cr(®1, %, t) =0 subject to Cr"(P1) =0
» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations over
subject to zero conservation- time step n
violation rates over subdomains subject to zero conservation

violations over time step n
over subdomains

+ Conservation enforced over prescribed subdomains

Nonlinear model reduction Kevin Carlberg 4?)



Conservative model reduction

Conservative Galerkin Conservative LSPG
migéiﬁjpize (DU, ®X, t)]|2 migéi%pize (D) |2
‘subject to Cr(®1, %, t) =0 subject to Cr"(P1) =0
» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations over
subject to zero conservation- time step n
violation rates over subdomains subject to zero conservation

violations over time step n
over subdomains

+ Conservation enforced over prescribed subdomains

» ExXperiments: enforcing global conservation can reduce error by 10X

Nonlinear model reduction Kevin Carlberg 4?)



Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 2018
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Collaborator: Kookjin Lee (Sandia)
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Model reduction can work well...
vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

pressure_rom

i
e Y _ —

0
17
14
fom

26
23

20
[ i
14

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is stronqg <=
2) Accuracy limited by content of ®
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vorticity fom

high-fidelity
5 hours, 48 cores




Kolmogorov-width limitation of linear subspaces
dp(M) = igf Poo (M, Sp) Po(M,S,) := sup inf ||x —y|

x€eM YES)
» M= {x(t,pn) | t € [0, Tina], 0 € D}: solution manifold
» Sp ¢ set of all p-dimensional linear subspaces
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dp(M) =

{g}f'/:§g(;/\/1, CS},)

Kolmogorov-width limitation of linear subspaces

Pa(M,S,)
XGEJV4

Z inf [x—y[2/ | > IIxII?

xeM

» M = {x(t, )|t € [0, Tinat], o € D}: solution manifold

» Sp 1 set of all p-dimensional linear subspaces

relative error

Nonlinear model reduction

Example

100é

102 |

10—6g

*
’0

*
*
*
*
*
*
*
*
*
*
*
.
-
.
.
.
v
&

3 10 15 20 25

reduced dimension p

- Py(M, range(®))
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Kolmogorov-width limitation of linear subspaces
dp(M) = inf Py(M, Sp) Py(M, S,) Z inf |[x —y|[2/ > Ix2

e V<P xEM
» M = {x(t, )|t € [0, Tinat], o € D}: solution manifold

» Sp 1 set of all p-dimensional linear subspaces

. Example )
)é!\x X X X X x """" dp (M)
R :
.:"\.;. % zc
o 10—2;- \\ - P (./\/l, ra nge(d)))
- closureerror|
v o V2 oxem IX = Xisecll?
= Vxer IXI?
© e, ]
el SR
10-6 .........
5 1IO 1I5 2IO 25

reduced dimension p
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Kolmogorov-width limitation of linear subspaces
dp(M) :=inf Po(M,Sp)  P2(M, ) Z inf [lx —y[I*/ > lx|1?

xEM xeM
» M= {x(t, )| t €0, Tsnal], o € D}: solution manifold

» Sp 1 set of all p-dimensional linear subspaces

. Example .

\: ! ! | I dp(M)

N, I} g

: .’Fn;\ ¥
S w0l A - Py(M, range(®))
s
S ' > er X — Xispcl?

M LSPG

g IKolmogorov-W/dth Ve >
=RRL ! _ \/er/\/l ||
© | limitation™... z
= | o |
o 10_6; : ........... | dlm(M)

B A

3 5 10 15 20 25

reduced dimension p

- Kolmogorov-width limitation: significant error for p = dim(M)
» Goal: overcome limitation via projection onto a nonlinear manifold
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Nonlinear trial manifold

Linear trial subspace Nonlinear trial manifold

range(®) := {®dx|x € RP} S :={g(x)|x € RP}
example x
N=3
p=2

state  x(t) ~%(t) = DK(t) € range(®)  x(t) m k(1) = g(X(1)) € S
I

| 1B |0

+ manifold has general structure

, dx  dx dx dx  dx . dx
velocity —- =~ =®_-¢ range(®) N = Vg(x)a e TS
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Manitold Galerkin and LSPG projection
Linear-subspace ROM  Nonlinear-manifold ROM

dx . o dx . U
Galerkin —; = argmin[[r(®v, ®x;t)[l2 — = argmin[r(Ve(X)V, g(X); t)[|2
dt JERN dt GERN
) )
dx - . . dx - .
®— = argmin |V —f(®x;t)|l2  Vg(x)— = argmin||v — f(g(x); t)]|2
dt vErange(®) dt ve TS
) )
dx dx
— = O f(dx; — = Vg(x) f(g(x);
X~ oTH®x 1 O Va0 f(g(®): 1
LSPG x" = argmin|[r"(dv)||5 x" = argmin|[r"(g(V))||2
VERP vERP

+ Satisfy residual-minimization properties

How to construct manifold S := {g(x) | x € RP} from snapshot data?
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Deep autoencoders

Input layer Code Output layer
X1
X2
"\ %
X4 ."\\ //". %4
- ““‘o""““ %
- ’0/, \\0’

0-' \0

Encoder henc(-;0c.nc) Decoder hyec(-; O4ec)
X = hdec('§ Hdec) O henc (X§ Henc)

+ If X & x for parameters 0, g = hgec(+; 0..) produces an accurate manifold

Kevin Carlberg



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for £t € Dquery \ Dtraining

PEC R S
A

» Compute 0" by approximately solving miniemize 1 X(1) — 2(1)(9)HF

» Define nonlinear trial manifold by setting g = hgec(+; 03..)

+ Same snapshot data
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Numerical results

1D Burgers’ equation 2D reacting flow
. . ow(X, t; ,
ow(x, t; u) I of (w(x, t; u)) 0,027 W(gt ©) — V- (kVW(Z, t; 1))
ot Ox

—v-Vw(X, t; p) + a(w(X, t; pn); p)

> : @, inlet boundary condition > JL:two terms in reaction
» Spatial discretization: finite volume » Spatial discretization: finite difference

> Time integrator: backward Euler * Time integrator: BDF2

Autoencoder architecture

L
_— o _
_)I o0 0 I I s 00 I—) s o o
e o o P

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers
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Manifold LSPG outperforms optimal linear subspace

1D Burgers’ equation
conserved variable

high-fidelity

model

POD-LSPG
p=>5

Manifold LSPG
p=5

6 -

4

2 -

0

L

N

0 20 40 60 80 100
X

0 20 40 60 80 100
X

——

L

0 20 40 60 80 100
X

Nonlinear model reduction

2D reacting flow

H> fraction

tem peratu re

0.9
1500
1000
500

0.0

0.9
1500
1000
500

0.0

0.9
1500
1000
500

0.0
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Method overcomes Kolmogorov-width limitation

1D Burgers’ equation

10° = 1 T e, d (M)
| Tx >|< X X X x : p
| N | |
S N P, '~ Py(M, range(®))
g 10_1;\:&8{\ x 1075 : %%:\ | g
GJ : \~.,\.~3:.’ . : .’..’:;\.\. § \/ZXEM ||x S XLSPG H2
Qv \")*(» et E
2 . e L Vel VS e X[
S o = T dim(M)
T) | '*-~x,\.2 e |
-t | ¥ R
: e Lox P (./\/l, S)
1075 ¢ 11070 : ...... ;
LY ] i ! ~
MEGTT WD e e
35,10 20 30 40 50 3 5 10 15 20 25 vV D oxem 1112
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace

+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
+ Method overcomes Kolmogorov-width limitation
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' GCCUI’acy: LS PG prOJECﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

' StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
» robustness: h-adaptivity c, 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]
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Model reduction can work well...
vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

pressure_rom

i
e Y _ —

0
17
14
fom

26
23

20
[ i
14

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is strong
2) Accuracy limited by content of ¢ €

vorticity fom

high-fidelity
5 hours, 48 cores
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conserved variable

conserved variable

Nonlinear reduced-order modeling

031

0.2

011

-0.1 1

-0.2

-0.3

high-fidelity model

_ time=7.7

~ »""_—‘—
»»___,—f"’
B

{
,

50 100 150 200 250

spatial variable

-

50 100 150 200 250

spatial variable

lllustration: inviscid 1D Burgers' equation

Kevin Carlberg
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lllustration: inviscid 1D Burgers' equation

high-fidelity model

| time=139 | |

S

S :

S —

o '|

> 'l

Ra |

QL I

> |

L

QL | ;

(2 | S e

S -

O =

U : N | '

spatial variable
reduced-order model

& time =14 | |
Q r )
: 9 m \’ ‘J‘_J

E Ww"'m " ' |
2 ‘ | reduced-order model
> | inaccurate when @
5 | insufficient
@) -

O o

spatial variable
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I\/Iain idea [C., 2015]

Model-reduction analogue to mesh-adaptive h-refinement

» ‘Split” basis vectors

AN/ AN

finite-element reduced-order-model

h-refinement h-refinement
» Generate hierarchical subspaces

(B { ==

range C range

\ & J \
» Converges to the high-fidelity model
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Refinement tree encodes splitting




Refinement tree requirements

h-adaptivity generates a hierarchy of subspaces if:
1. children have disjoint support, and —>
2. the union of the children elements is equal to

the parent elements

h-adaptivity converges to the high-fidelity model if:

1. every element has a nonzero entry in >1 basis vector,
2. the root node includes all elements, and

3. each element has a leaf node.

—>

Tree-construction algorithm
» |ldentifies hierarchy of correlated states via k-means clustering
+ Ensures theorem conditions are satisfied
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Which vectors to split?

by =

() () [ ()
D./ \D G/ \D D/ \D D./ \D
while [0"] > ¢

1. Solve: dual solve with coarse basis

i o . 0dgq, .
Yy = argmin|| S—(®4RE) " ®ul + = (®uxf) " |

Vv

Kevin Carlberg



Which vectors to split?

by =

() () [ ()
D./ \D -./ \- D/ \D ../ \.
while [0"] > ¢

1. Solve: dual solve with coarse basis

i o . 0dgq, .
Yy = argmin|| S—(®4RE) " ®ul + = (®uxf) " |

Vv

2. Estimate: prolong%te aan corrT1pute fine error indicators
A7 = [(1yF)i " [®n]i " e (®HXg)]
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Which vectors to split?

®) =

while |5 | > €

1. Solve: dual solve with coarse basis
8r 0 N
%) T Ou+ S (Oush) T |2

Y =

v

2. Estimate: prolongate aan compute fine error indicators
Al = |(|HYH [‘Dh] r"(® Xy
3. Mark: identify basis vectors to refine {J | Z A > 71}
i€C())
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Which vectors to split?

by =

while |5 | > €

1. Solve: dual solve with coarse basis
8r .0 ~n
%) T Ou+ S (Oush) T |2

—_— (I)h:

Y =

v

2. Estimate: prolongate and compute fine error indicators
A7 = [(1y7)i [ @] T e (@u%E)

3. Mark: identify basis vectors to refine {J | Z A > 71}

a. Refine: split identified basis vectors icC(j)

s. Compute solution with refined basis x; = argmin ||r"(v)||>
end vErange(®y)
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lllustration: inviscid 1D Burgers' equation
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high-fidelity model
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Nonlinear reduced-order modeling

h-adaptive ROM (mean dim 48.5)
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h-adaptivity provides an accurate, low-dim subspace

0 : : : :
1O£ Y ) L L ] e o
! °
107 ¢ ® o0 ooo
§ PY g @
S 2 o
e . '
5 10
E i
I )
8 10'45

10"

subspace dimension

Reduced-order models
-minimum error 7.5%

- cannot overcome insufficient training data
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102

o reduced-order models
e h-adaptive ROMs
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h-adaptivity provides an accurate, low-dim subspace

1OO£ : : : :
: Y Y L o e O
o . |« reduced-order models
. : . ® ®© 00 00000, .
o | . .+ h-adaptive ROMs
o 107 o« *
v | .o |
E 107 ¢
© f ‘
Q 4 | ¢
— 10 " ¢ @
10° 102

subspace dimension

Reduced-order models
- minimum error 7.5%
- cannot overcome insufficient training data

h-adaptive ROMs
+ minimum error <0.01% with lower subspace dimension
+can overcome insufficient training data without collecting more data
+can satisfy any prescribed error tolerance
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]
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Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0O003525
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