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Using machine learning to enable extreme-scale simulations for many-query problems
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High-fidelity simulation

+Indispensable across science and engineering

- High fidelity: extreme-scale nonlinear dynamical system models

Turbulent reacting flows Antarctic ice sheet modeling Magnetohydrodynamics
courtesy J. Chen, Sandia courtesy R. Tuminaro, Sandia courtesy J. Shadid, Sandia

Many-query problems

e uncertainty propagation ® multi-objective optimization

® Bayesian inference ® stochastic optimization
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High-fidelity simulation: captive carry




High-fidelity simulation: captive carry

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

Many-query problems

o explore flight e quantify effects of ® robust design of
envelope uncertainties on store load store and cavity
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Computational barrier at NASA

El]l’ Nl-‘\ll ﬂOl’k Cimes HIGH-PERE. » ' /
Geniuses Wanted: NASA Challenges FAST COMPUTI INJ E H ﬂ LLENGE

Coders to Speed Up Its Supercomputer

“Despite tremendous progress made in the past few decades,
CFD tools are too slow for simulation of complex geometry flows...
[taking] from thousands to millions of computational core-hours.”

“To enable high-fidelity CFD for multi-disciplinary analysis and design,
the speed of computation must be increased by orders of magnitude.”

“The desired outcome is any approach that can

accelerate calculations by a factor of 10x to 1000x.”
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Approach: exploit simulation data

dx
dt
Many-query problem: solve ODE for p € Dqyery

ODE: =f(x;t, ), x(0,) =xo(pt), te€]0, Thna], @D

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for g € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Diraining
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Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Structure preservation: preserves important physical properties
4. Robustness: guaranteed satisfaction of any error tolerance

5. Certification: accurately quantify the ROM error

Nonlinear reduced-order modeling Kevin Carlberg



Model reduction: existing approaches

Nonlinear dynamical systems: ineffective

* Proper orthogonal decomposition (POD)—Galerkin sirovich, 19871

- Inaccurate, unreliable: often unstable

- Not certified: error bounds grow exponentially in time

- Expensive: projection insufficient for speedup

- Structure not preserved: dynamical-system properties ignored
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

’ aCCUI‘acy: LS PG prOjeCtiOn [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
’ IOW cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

¢ StrUCture preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 2018
» robustness: h-adaptivity c, 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» accuracy: LSPG projection (c, Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Matthew Barone Harbir Antil (GMU)
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Training simulations: state tensor

dx
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining

number of

time steps T
+—>

A

number of
state variables N

<
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Training simulations: state tensor
dx

. — =f(xt,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining
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Tensor decomposition

dx
. =f(x t,
ODE ” (x; t, )

1. Training: Solve ODE for g € Diyaining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

|
c
M
<

\l
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Tensor decomposition

dx
. — =f(x:t,
ODE ” (x; t, )

1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

® columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

Nonlinear reduced-order modeling Kevin Carlberg
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Previous state of the art: POD-Galerkin

d .
ODE: d—)t(:f(x;t,u) D .

3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

1. Reduce the number of unknowns 2. Reduce the number of equations

>”<t)_<bx(t) f(PX;t, 1) — ¢@
Galerkin ODE: E =o' f(dx;t, 1) |D ,'. ¢ 30
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Captive carry

.
oooooooo
¢

*» Unsteady Navier—Stokes »Re=6.3x10® *» Mo

=0.6
Spatial discretization Temporal discretization
» 2nd-order finite volume » 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 1073
» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances

Nonlinear reduced-order modeling
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High-tidelity model solution

vorticity field

—-— 50-

|: Fak
\b

pressure field
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Galerkin performance

2.8
- high-fidelity:
_ dim 1.2x105
a —— Galerkin: dim 204
g_ 2 4 a2 LA NARA NR NA - Galerkin: dim 368
© 18 - = Galerkin: dim 564
) Jq =
» 20F A.Y
A A Y
()] .
S
Q |
1.6 | | | | | |
0 2 4 6 8 10 12

time
- Galerkin projection fails regardless of basis dimension
Can we construct a better projection?
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Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dX
Cb——d)(bT f(Px; t)

f(x; t)
| 1 1™

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

dX
() X(x t) = argmin ||r(v,x; t)|>
dt vErange(®)
r(v,x;t) :=v — f(x; t)
OAE Galerkin OAE

r"(x")=0, n=1,..., T

k k
r"(x) := apx — AtBof(x; t") + Z ajx" — Atz Bf(x"; t")
j=1 j=1

- Time-discrete Galerkin solution: not generally optimal in any sense
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Residual minimization and time discretization

( ) ( : )
ODE | Galerkin ODE
dx residual >l dx
— f(x t) minimization —(X t) = argmlg [r(v, x; £)]]2
L d p k vErange(®) J
time time
discretization discretization
) .
( 1SPGOAE ) ... [ OAE " Galerkin OAE
X" = 2rgml(r;))\|Ar"(")H2 “minimization| ¥"(x") =0 & "r"($x") = 0
vErange
k n:]_,___,T J Ln:].,...,TJ L n:].,...,T J

[C., Bou-Mosleh, Farhat, 2011]
Ox" = argmin ||Ar'(v)|. & (M " (dx") =0
vErange(®) - ‘

W (") = AT Aol — Atﬁoaf( dx"; t))d

Least-squares Petrov—Galerkin (LSPG) projection
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Discrete-time error bound

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward differentiation formula (BDF) time integrator is used,

4. LSPG employs A =1, then

k
A ]' N ]' — 5 —E
Ix" — ®xgl2 < - fIrg(®Xg)ll2+ > laell|x"" — &%
1 T
A : A —/ sn—~¢
" — O%{spglls < - min [elspg(@9)l2 > o[ @l
/=1

+ LSPG sequentially minimizes the error bound
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LSPG performance

2.8
—_ high-fidelity:
] i | dim 1.2x106
a | —— Galerkin: dim 204
g_ 2 4 _- ------- Galerkin: dim 368
© TN § - — Galerkin: dim 564
iy ¥ :
= ) — LSPG: dim 204
7]
N 2.01 “)
o | NI O\l O ®mE O®mFE Wy Vo LSPG: dim 368
Q -
- = LSPG: dim 564
16 | | | | | |
0 2 4 § 3 10 12

+ LSPG is far more accurate than Galerkin
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
> IOW cost: Sample mESh [C., Farhat, Cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Charbel Farhat (Stanford) Julien Cortial (Stanford)
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Wall-time problem

2.87
- high-fidelity:
i ‘ dim 1.2x106
2 | — Galerkin: dim 204
g_ 24 e LR MR IR A Galerkin: dim 368
© TN § - — Galerkin: dim 564
L wy
= R —— LSPG: dim 204
. - |
N 2.0 E “)
8 NI V] Rl WE Wy e LSPG: dim 368
!
- - LSPG: dim 564
]_6 | l l l l l
0 2 4 6 8 10 12
time
» High-fidelity simulation: 1 hour, 48 cores Why does this occur?
» Fastest LSPG simulation: 1.3 hours, 48 cores Can we fix it?
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize r"(d V)|

i

Can we select A to make this less expensive?

» Training: collect residual tensor R”* while solving ODE for gt € Diaining
» Machine learning: compute residual PCA @, and sampling matrix P
» Reduction: compute regressmn apprommahon r" ~ 1" = & (Pd,)"Pr”

value

index
miniAmize
Vv
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize r"(d V)|

i

Can we select A to make this less expensive?
» Training: collect residual tensor R”* while solving ODE for gt € Diaining
» Machine learning: compute residual PCA ®, and sampling matrix P
» Reduction: compute regression approximation r" ~ " = ® (P®,)" Pr”

value

minimize
¢ 2+ Only a few
elements of r"

must be computed
2

Kevin Carlberg 22
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Sa m p ‘ e m eSh [C., Farhat, Cortial, Amsallem, 2013]
minimize||(P®,)"Pr"(®V)||-

—~—
sample
mesh .
+ HPC on a laptop
vorticity field pressure field
A=(P®,)"P | |

32 min, 2 cores

e Y .

pressure_fom

26
23
20
17
14

+229x savings in core—hours
+< 1% error in time-averaged drag
Implemented in three computational-mechanics codes at Sandia

vorticity fom

high-fidelity
5 hours, 48 cores
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Ah med bOdy [Ahmed, Ramm, Faitin, 1984]

1044 mm 369 LN AN AR AR
sy Sy Ay ‘
\Q g “g mm’?mf%é‘d“AﬂW
Q 42 I~ ‘"‘”ﬁ:ﬁ
II I RO i1 [T__£50 ‘h’flk‘» a
202 470 T Y f h&» qug
. . 163.5 K]
Ay S
1 ing
v

» Unsteady Navier—Stokes »*Re=4.3x 106 » M..=0.175

Spatial discretization Temporal discretization

» 2nd-order finite volume » 2nd-order BDF

* DES turbulence model » Time step At =8 x 10™s
» 1.7 x 10" degrees of freedom » 1.3 x 10° time instances

Nonlinear reduced-order modeling
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
LSPG ROM with A = (P®,)™P high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

+438x savings in core—hours
+Largest nonlinear dynamical system on which ROM has ever had success

Nonlinear reduced-order modeling Kevin Carlberg



Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
* [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Nonlinear reduced-order modeling Kevin Carlberg 26



Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' GCCUI’acy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

» structure preservat'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models

[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]
T Al e,

Youngsoo Choi Syuzanna Sargsyan
(U Washington)
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Finite-volume method

dXx
. — =f(x:t
[ODE - (x; t)

1 S >
XI(i,j)(t) — m /S; U,'(X, t) dx

» average value of conserved variable i over control volume j

1 — — —f — 1 — —
friijy(x t) = S / g;(x; X, t) -nj(X) ds(X) - S / si(x; X, t) dX
‘ j’ I T ‘ J1 JQ ———
» flux and source of conserved variable i within control volume j

dXI i
r(ij) = di ) (t) — fz(ijy(x, t)

» rate of conservation violation of variable i in control volume
(OAE: r"(x)=0, n=1,...,N]

tn—l—l
1
(i) = xz(ijy(t") = xz(ipy (t"7) + / fr(ij)(x, t)dt
tn
» conservation violation of variable j in control volume j over time step n

Nonlinear reduced-order modeling Kevin Carlberg



COnservat|Ve mOde‘ redUCthﬂ [C., Choi, Sargsyan, 2018]

p Galerkin LSPG
X : ~ :
®—(x,t) = argmin |[|r(v,x; t)]> ®x" = argmin ||Ar"(v)]|>
dt vErange(®P) vErange(®)
» min. sum pf squared » min. sum of squared
conservation-violation rates conservation violations over time step n
- Neither enforces conservation!

Conservative Galerkin Conservative LSPG
minimize |[r(v, x; t)||2 minimize [[Ar"(v)||>
vErange(®) vErange(P)

» min. sum of squared » min. sum of squared
conservation-violation rates conservation violations over time step n

subject to zero conservation violations over
time step n over subdomains

+ Conservation enforced over subdomains!
» Experiments: enforcing global conservation can reduce error by 10X

Kevin Carlberg 29

subject to zero conservation-violation rates
over subdomains
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
* robustness: projection onto nonlinear manifolds [tee, c, 2018
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Kookjin Lee
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Model reduction can work well...
vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

pressure_rom

i
e Y _ —

0
17
14
fom

26
23

20
[ i
14

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is strong
2) Accuracy limited by information in ®

vorticity fom

high-fidelity
5 hours, 48 cores
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Model reduction can work well...

vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

vorticity fom

high-fidelity
5 hours, 48 cores

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is stronqg <=
2) Accuracy limited by information in ®
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Kolmogorov-width limitation of linear subspaces
dp(M) = igf Poo (M, Sp) Po(M,S,) := sup inf ||x —y|

x€eM YES)
» M= {x(t,pn) | t € [0, Tina], 0 € D}: solution manifold
» Sp ¢ set of all p-dimensional linear subspaces

Nonlinear reduced-order modeling Kevin Carlberg



Kolmogorov-width limitation of linear subspaces
dp(M) = inf Py(M, Sp) Py(M, S,) Z inf |[x —y|[2/ > Ix2

e V<P xEM
» M = {x(t, )|t € [0, Tinat], o € D}: solution manifold

» Sp 1 set of all p-dimensional linear subspaces

Problem 1 Problem 2 -
S . . . 5 100 — R dp(_/\/l)
: E‘x >|< X X
)i | ] ( % zc
§ 101 @ [ — éTD\ | — Py(M, range(®))
X : - RN ;
x S | | i ? =
o | e o e Ve X~ Xisecl
E 102 - : \.x\'\:s\ : 102 : \\"\\_\_; \/erj\/l HXH2
© | T & T, :
&J | e S |
| | e e L1 dim(M)
107 1078 b
| .
3 5 10 2I0 3I0 4IO 50 Z|’> 5 1IO 1I5 2IO 25
reduced dimension p reduced dimension p

- Kolmogorov-width limitation: significant error for p = dim(M)
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Overcoming Kolmogorov-width limitation

Model reduction on nonlinear manifolds (cu, 2011; kashima, 2016; Hartman and Mestha, 2017]
- Kinematically inconsistent [kashima, 2016; Hartman and Mestha, 2017]

- Limited to piecewise linear manifolds (cu, 2011]

- Solutions lack optimality [6u, 2011; kashima, 2016; Hartman and Mestha, 2017]

Nonlinear reduced-order modeling Kevin Carlberg



Goals

Overcome shortcomings of existing methods

+ Enable nonlinear manifolds with general nonlinear structure
+ Kinematically consistent

+ Satisfy optimality property

Practical nonlinear-manifold construction
+ No problem-specific knowledge required
+ Use same snapshot data as typical linear-subspace approaches

Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders .ec and c., 2018]

Nonlinear reduced-order modeling Kevin Carlberg



Nonlinear trial manifold

Linear trial subspace Nonlinear trial manifold

range(®) := {®dx|x € RP} S :={g(x)|x € RP}
example x
N=3
p=2

state  x(t) ~%(t) = DK(t) € range(®)  x(t) m k(1) = g(X(1)) € S
I

| 1B |0

+ manifold has general structure

, dx  dx dx dx  dx . dx
velocity —- =~ =®_-¢ range(®) N = Vg(x)a e TS

+ kinematically consistent

Nonlinear reduced-order modeling Kevin Carlberg 35




Manitold Galerkin and LSPG projection
Linear-subspace ROM  Nonlinear-manifold ROM

dx . o dx . NP
Galerkin —7 = argmin|jr(®v, ®x; t) || — = argmin|[r(Vg(X)V, g(X); t)||2
dt VERD dt vER?
() ()
dx . R R .dx o N
®— = argmin |[v—f(®x;t)]]2  Vg(x)— = argmin||v — f(g(x); t)]|2
dt vErange(®) dt ve TS
() ()
dx dx
— = O f(dx; — = Vg(x) f(g(x);
X~ oTH®x 1 Ve f(g(): 1)
LSPG x" = argmin||Ar"(®V)||2 x" = argmin||Ar"(g(v))||2
VERP VERP

+ Satisfy optimality properties

How to construct manifold S := {g(x) | x € RP} from snapshot data?

Nonlinear reduced-order modeling Kevin Carlberg



Deep autoencoders

Input layer Code Output layer
X1
X2
"\ l‘ %3
i ."\\ / @’ %4
g S g G
5
NS Lae\- S
6

0-’ ‘-0

Encoder henc(-;0c.nc) Decoder hyec(-; O4ec)
X = hdec('§ Hdec) O henc (X§ Henc)

Kevin Carlberg



Deep autoencoders

Input layer Code Output layer
X1
X2
"\ %
X4 ."\\ //". %4
- ““‘o""““ %
- ’0/, \\0’

0-' \0

Encoder henc(-;0c.nc) Decoder hyec(-; O4ec)
X = hdec('§ Hdec) O henc (X§ Henc)

+ If X & x for parameters 0, g = hgec(+; 0..) produces an accurate manifold

Kevin Carlberg



Algorithm

1. Training: Solve ODE for pt € Dkraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for p¢ € Dquery \ Dtraining

Nonlinear reduced-order modeling Kevin Carlberg 38



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for p¢ € Dquery \ Dtraining

PEC R S
A

» Compute 0" by approximately solving miniemize 1 X(1) — 2(1)(9)HF

» Define nonlinear trial manifold by setting g = hgec(+; 03..)

+ No problem-specific knowledge required

+ Same shapshot data

Nonlinear reduced-order modeling Kevin Carlberg 38



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for £t € Dquery \ Dtraining

PEC R S
A

» Compute 0" by approximately solving miniemize 1 X(1) — 2(1)(9)HF

» Define nonlinear trial manifold by setting g = hgec(+; 03..)

+ No problem-specific knowledge required

+ Same shapshot data
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Numerical results

1D Burgers” equation 2D Chemically reacting flow
. . ow(X, t; .
Owlx, tip) | WO tim) g ooox PMEER) _ g (epw(s, ;)
ot Ox t B _
—v-Vw(X, t; p) + q(w(X, t; p); 1)
» W @, inlet boundary condition > JL:two terms in reaction

» Spatial discretization: finite volume » Spatial discretization: finite difference

* Time integrator: backward Euler * Time integrator: BDF2

Autoencoder architecture

g /éll Ilﬁ/

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers
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Results: nonlinear manifold interpretation

1D Burgers’ equation

t=13.16, (u1, 42) = (4.53, 0.015)

reduced state X

O | | I 1
0 20 40 60 80

spatial variable x

decoding g(X)
conserved variable w

Nonlinear reduced-order modeling

100

2D Chemically reacting flow

t=0.023, (U1, ) = (6.5e+12, 9.0e+03)

-a.;::'..
@ -0.50
1.0
05 4
-0.5 0.0 11

~ 0.0

 0.50
1025 4.
0.00
-0.25

) 0.5 -0.5
temperature H>O fraction
0.9 2000 0.9
0.10
1500
1000 0.05
500
0.0 0.0 0.00
0.0 1.8 0.0 1.8
O; fraction H; fraction
0.9 0.9
0.20
0.15 0.02
0.10
0.01
0.05
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Manifold LSPG outperforms optimal linear subspace
1D Burgers’ equation 2D Chemically reacting flow

conserved variable temperature H> fraction
hlgh-fldellty n 0.9 0.9
m Odel ] 1500 0.02
:- - 1000 vor
0 ' . : . 0.0 0.0 0.00
pI’OjeCTIOH onto 0 20 40 60 80 100 0.0 1.8 0.0 1.8
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Method overcomes Kolmogorov-width limitation
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+ Autoencoder manifold significantly better than optimal linear subspace
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Method overcomes Kolmogorov-width limitation
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+ Autoencoder manifold significantly better than optimal linear subspace

+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG

Nonlinear reduced-order modeling Kevin Carlberg



Method overcomes Kolmogorov-width limitation
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+ Autoencoder manifold significantly better than optimal linear subspace

+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
+ Method overcomes Kolmogorov-width limitation
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' GCCUI’acy: LS PG prOJECﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

' StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
» robustness: h-adaptivity c, 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Nonlinear reduced-order modeling Kevin Carlberg



Model reduction can work well...

vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

vorticity fom

high-fidelity
5 hours, 48 cores

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is strong
2) Accuracy limited by information in ¢ G

Nonlinear reduced-order modeling Kevin Carlberg




conserved variable

conserved variable
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lllustration: inviscid 1D Burgers' equation
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lllustration: inviscid 1D Burgers' equation

high-fidelity model
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I\/Iain idea [C., 2015]

Model-reduction analogue to mesh-adaptive h-refinement

» ‘Split” basis vectors

AN/ AN

finite-element
h-refinement

» Generate hierarchical subspaces

(B { ==

range C range

\ & J \
» Converges to the high-fidelity model

reduced-order-model
h-refinement
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lllustration: inviscid 1D Burgers' equation
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

' accuracy: LS PG prOjeCﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
* robustness: projection onto nonlinear manifolds [tee, c, 201¢]
> robustness: h-adaptivity (c., 2015)

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Brian Freno
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Discrete-time error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Go|cAL,
3. A backward differentiation formula (BDF) time integrator is used,
4. LSPG employs A =1, then

. Y1(72)" exp(y3t") IR,
x" — Px2l, < max ||r-(®dx
| Gll2 < T At e, [re(®xc) )2

. Y1(72)" exp(y3t”) o .
x" — dx < max min ||/ v
" = O8spsl < IR e min g (00)

Can we use these error bounds for error estimation?
- grow exponentially in time
- deterministic: not amenable to uncertainty quantification

Nonlinear reduced-order modeling Kevin Carlberg



Main idea

* Observation: residual-based quantities are informative of the error

rTTT] T T T TTT] T T T T T7
e Iy

— —4 | ]

El z

%S - |

T | i i

s * :

- — - ]
S —

55 05| o (rilldull) |

a - m (AL 1611 |

[ 111 R L 1 1 11Tl

107° 1074

Residual 7 /error bound

* So, these are good features: can predict the error with low variance

Idea: Apply machine learning regression to generate a mapping from
residual-based quantities to a random variable for the error

Machine-learning error models
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Machine-learning error models: formulation

o(pm) = flp(p)) +e(p(p))

deterministic stochastic

v

features: p(u) € RYr
regression function: f(p) = E|0 | p]
noise: €(p)

v

v

~ ~

o(p) = fp(p)) +e(p(p))

deterministic stochastic

regression-function model: f(~ f)
noise model: é(= ¢)

v

v

» Desired properties in error model §
1. cheaply computable: features p(ut) are inexpensive to compute
2. low variance: noise model €(p) has low variance
3. generalizable: empirical distributions of ¢ and § ‘close’ on test data
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Training and machine learning: error modeling

1. Training: Solve high-fidelity and reduced-order models for tt € Diraining

IS unery \ Dtraining
D O

n

CIﬁFM — QQOM P

pressure_fom

2
B Y
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Training and machine learning: error modeling

2. Machine learning: Construct regression model
[ unery \ Dtraining

®
®
pressure_rom D

32‘;U n n
duFM — 9rROM P

B S | R

pressure_fom

26
23
20
17
. I -

» randomly divide data into (1) training data and (2) testing data
» construct regression-function model f via cross validation on training data
» construct noise model € from sample variance on test data

n

Nonlinear reduced-order modeling Kevin Carlberg



Reduction

[UAS Dtraining
2. Machine learning: Construct regression model
3. Reduction: predict reduced-order-model error for p € Dquery \ Drraining

Do iv

inputs p — [reduced-order model | — outputs qrom.
] n=1 .. T

features p", n=1,..., T
|

r . )
regression model

0" () = f(p"(1)) + E(p" ()

- _J

(~n n cn A
qhev () = grom () + 0" ()

stochastic deterministic stochastic

_ ),
+ Statistical model of high-fidelity-model output

Use error analysis to engineer features p"

machine learning

—

errormodel 5" n=1,..., T
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Application: Predictive capability assessment project

Deformation
Magnitude [m]
0.011

0.010

0.009

0.008
0.007

0.006

0.005
0.004

0.003

0.002

R 77
N e e,
eSSt s sses,
s s
| AL

S LAl
<] S 0.001

0.000

v

high-fidelity model dimension: 2.8 x 10°

reduced-order model dimensions: 1,... 5

inputs p: elastic modulus, Poisson ratio, applied pressure
quantities of interest: y-displacement at A, radial displacement at B
training data: 150 training examples, 150 testing examples

v

v

v

v
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Application: Predictive capability assessment project

y-displacement at A radial displacement at B
log1o(1 — R?) log1o(1 — R?)

(7 OLS: Linear
S
QO 0LS: Quadratic
L
“ .
Q SVR: Linear
E SVR: RBF
c
9 RF
)
s
Q k-NN
o
Q) ANN
Ny -5
=2 & g S 2 g = g = = =2 & 2 2 @ 2 2 g = =2
~ e — — (e} ) S - e ~ e — — e} (e} S -] [
= = . . T TS g 32 = = L 5 T 2 =2 =2
= = &L & 0T T = = L & T T
= 5 m Z 2 & = = e oz = S
A E E e = AT s & T
s 2 LT 03 & 0F i 2 L o5 & T
features features
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Application: Predictive capability assessment project

regression methods

y-displacement at A radial displacement at B
2 2
0g1o(1l — R7) log1o(1 — R%)
OLS: Linear
OLS: Quadratic
SVR: Linear i
SVR: RBF
-3
RF
k-NN 4
ANN
—5
£ 2 22 38 g8 %% 225328588 T\
= = . . T TS g 32 = = . oL 7 7T 2 2 =2
= = &L & 0T T = = L & T T
2 x == S 2 L5 = = &= =
< = e — < . —_— —
ERE & 5§ E 7
— =2 = 5§ = — =2 = 5§ =
features features

- parameters (model-discrepancy approach): large variance
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Application: Predictive capability assessment project

regression methods

y-displacement at A

2
Oglo(l - R )
OLS: Linear
OLS: Quadratic
SVR: Linear .
SVR: RBF
RF
k-NN
ANN
%‘ o o o 2 o o @«
S|E s LU g 7 S
NIV
A -A = = e
2 . oy A~ %
= = i =
features

radial displacement at B

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance

Nonlinear reduced-order modeling

2
|0g10(1 — R )
—2
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I4
-5
S 2 g g g g = \&
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> > I I i i —
= = > > I I
— — ~ ~— [« [w)]
goS T o=w =
. <l T oD
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Application: Predictive capability assessment project

regression methods

y-displacement at A radial displacement at B
2 2
0gyo(l — R7) log1o(1 — R%)
OLS: Linear
OLS: Quadratic
SVR: Linear 9
SVR: RBF
-3
RF
k-NN —4
ANN
—5
= = o = o o o ol|l+=w|= = = o o oo o o o|lw|=
=B — — (@) (@) (@) (@) e E=N — — (e (@] (-} (@] e
DT - - A D - -
£ ==L 11 £ 2=t 1 I\
< = e — < . —_— —
ERE s £ % fE T
features features

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
» PCA of the residual: lowest variance overall but costly
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Application: Predictive capability assessment project
radial displacement at B

regression methods

y-displacement at A
0g1g(1 — R?)

OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

RF

N — ~ ~— ~ ~— ~ ~— Lreml
== = o o o o o o <=
- o — — o (@) (@) (@) .-
= =190 330 - = S S| X
R > > | |
512 2 = = Lo
— — ~ ~ [y (=
;_. 20 — —_— N— N—
o <= S 00 —_— —_—
< Q—I - - <$.|b0
s 2 L. 5 &~ 7
= T = 5§
_ 7 = =)

k-NN
ANN

([P

2
logyo(1 — R7)
_ 10
—2
-3
i4
—5
ol = 0 o o o w =
e — — (e (@] (-} (@] o~
= I I im im S S =X
- l= = I I ‘ﬂ‘ ‘ﬂ‘
2w = = = = =
<y o 0 - -
L o1 % % oE ¢
it 3. L~ .~ i
== b
N =
features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
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Application: Predictive capability assessment project

y-displacement at radial displacement at B
2 2
0gyo(l — R7) log1o(1 — R%)
0
(7, OLS: Linear
S
Q OLS: Quadratic —1
L
-
Q SVR: Linear 9
S SVR: RBF )
- C | .
9 RF
(V)
V)
Q k-NN 4
L
Q) (Cany )
LN -5
% o o o o o o @@« S8 = = = o T o o o «w 2
= = 7 7 S £ g g 3 = = 57 57 2 £ & § g
= L L7y = =2 = = L L 3y 7 = =5 2
iZ D = = & o= i 25 2= & &
A < e ) — - o, < = " w0 — —
. .- ol ] ~ 2 . . - ol <t = 2
U R, i 2 3 i % 3
features features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
+neural networks and SVR: RBF yield lowest-variance models
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Our research

» accuracy: LSPG projection

K. Carlberg, M. Barone, and H. Antil. “Galerkin v. least-squares Petrov—Galerkin projection in nonlinear model reduction,” Journal
of Computational Physics, Vol. 330, p. 693—-734 (2017).

» Jow cost: sample mesh

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallam. “The GNAT method for nonlinear model reduction: Effective implementation

and application to computational fluid dynamics and turbulent flows,” Journal of Computational Physics, Vol. 242, p. 623-647
(2013).

» Jow cost: reduce temporal complexity

Y. Choi and K. Carlberg. “Space—time least-squares Petrov—Galerkin projection for nonlinear model reduction,” SIAM Journal on
Scientific Computing, Vol. 41, No. 1, p. A26—A58 (2019).

» structure preservaﬁon

K. Carlberg, Y. Choi, and S. Sargsyan. "Conservative model reduction for finite-volume models," Journal of Computational Physics,
Vol. 371, p. 280-314 (2018).

» robustness: projection onto nonlinear manifolds

K. Lee and K. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders,”
arXiv e-Print, 1812.08373 (2018).

* robustness: h-adaptivity

K. Carlberg. “Adaptive h-refinement for reduced-order models,” International Journal for Numerical Methods in Engineering, Vol.
102, No. 5, p.1192-1210 (2015).

» certification: machine learning error models

B. Freno and K. Carlberg. “Machine-learning error models for approximate solutions to parameterized systems of nonlinear
equations,” Computer Methods in Applied Mechanics and Engineering, accepted (2019).
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Questions?

.
error

support vector machine
error prediction

1 — | reduced-order model]—> dROM
‘P
regression model] — 47

A

% error
error ® tolerance >
o |

wall time

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0O003525
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