Nonlinear reduced-order modeling

Using machine learning to enable extreme-scale simulations for many-query problems

support vector machine error prediction

Kevin Carlberg

Sandia National Laboratories

ICERM Workshop on Scientific Machine Learning Brown University
January 29, 2019

High-fidelity simulation

- Indispensable across science and engineering
- High fidelity: extreme-scale nonlinear dynamical system models

Antarctic ice sheet modeling courtesy R. Tuminaro, Sandia

Magnetohydrodynamics courtesy J. Shadid, Sandia

computational barrier

Many-query problems

- uncertainty propagation
- multi-objective optimization

Bayesian inference

stochastic optimization

High-fidelity simulation: captive carry

High-fidelity simulation: captive carry

- + Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Many-query problems

- explore flight envelope
- quantify effects of uncertainties on store load
- robust design of store and cavity

Computational barrier at NASA

The New York Times

Geniuses Wanted: NASA Challenges

Coders to Speed Up Its Supercomputer

"Despite tremendous progress made in the past few decades, CFD tools are too slow for simulation of complex geometry flows... [taking] from thousands to millions of computational core-hours."

"To enable high-fidelity CFD for multi-disciplinary analysis and design, the speed of computation must be increased by orders of magnitude."

"The desired outcome is any approach that can accelerate calculations by a factor of 10x to 1000x."

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Many-query problem: solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$

Idea: exploit simulation data collected at a few points

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Model reduction criteria

- 1. *Accuracy:* achieves less than 1% error
- 2. Low cost: achieves at least 100x computational savings
- 3. Structure preservation: preserves important physical properties
- 4. Robustness: guaranteed satisfaction of any error tolerance
- 5. *Certification:* accurately quantify the ROM error

Model reduction: existing approaches

Linear time-invariant systems: mature [Antoulas, 2005]

- Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
- Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]
- + Accurate, reliable, certified: sharp a priori error bounds
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: guaranteed stability

Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

- Reduced-basis method
- + Accurate, reliable, certified: sharp a priori error bounds, convergence
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: preserve operator properties

Nonlinear dynamical systems: ineffective

- Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987]
- *Inaccurate, unreliable*: often unstable
- Not certified: error bounds grow exponentially in time
- *Expensive*: projection insufficient for speedup
- Structure not preserved: dynamical-system properties ignored

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Matthew Barone

Harbir Antil (GMU)

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Nonlinear reduced-order modeling

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding

Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding

Φ columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

Previous state of the art: POD-Galerkin

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$
- 1. Reduce the number of unknowns 2. Reduce the number of equations

Galerkin ODE:
$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t, \boldsymbol{\mu})$$

Captive carry

→ Unsteady Navier-Stokes → Re = 6.3×10^6 → $M_{\infty} = 0.6$

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

High-fidelity model solution

vorticity field

pressure field

Galerkin performance

- Galerkin projection fails regardless of basis dimension

Can we construct a better projection?

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

Galerkin ODE

$$\mathbf{\Phi} \ \frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi} \ \mathbf{\Phi}^{\mathsf{T}} \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)$$

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{v}, \mathbf{x}; t)||_{2}$$

$$\mathbf{r}(\mathbf{v}, \mathbf{x}; t) := \mathbf{v} - \mathbf{f}(\mathbf{x}; t)$$

ΟΔΕ

$$\mathbf{r}^{n}(\mathbf{x}^{n}) = 0, \ n = 1, ..., T$$

$$\mathbf{\Phi}^T \mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{x}}^n) = 0, \quad n = 1, ..., T$$

$$\mathbf{r}^{n}(\mathbf{x}) := \alpha_{0}\mathbf{x} - \Delta t \beta_{0}\mathbf{f}(\mathbf{x}; t^{n}) + \sum_{j=1}^{k} \alpha_{j}\mathbf{x}^{n-j} - \Delta t \sum_{j=1}^{k} \beta_{j}\mathbf{f}(\mathbf{x}^{n-j}; t^{n-j})$$

- Time-discrete Galerkin solution: not generally optimal in any sense

Residual minimization and time discretization

[C., Bou-Mosleh, Farhat, 2011]

$$\begin{split} \mathbf{\Phi} \hat{\mathbf{x}}^n &= \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{argmin}} \| \mathbf{A} \mathbf{r}^n(\mathbf{v}) \|_2 \quad \Leftrightarrow \quad \mathbf{\Psi}^n(\hat{\mathbf{x}}^n)^T \mathbf{r}^n(\mathbf{\Phi} \hat{\mathbf{x}}^n) = 0 \\ \mathbf{\Psi}^n(\hat{\mathbf{x}}^n) &:= \mathbf{A}^T \mathbf{A} (\alpha_0 \mathbf{I} - \Delta t \beta_0 \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{\Phi} \hat{\mathbf{x}}^n; t)) \mathbf{\Phi} \end{split}$$

Least-squares Petrov-Galerkin (LSPG) projection

Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,
- 3. A backward differentiation formula (BDF) time integrator is used,
- 4. LSPG employs $\mathbf{A} = \mathbf{I}$, then

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n}\|_{2} \leq \frac{1}{h}\|\mathbf{r}_{\mathsf{G}}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n-\ell}\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{1}{h}\min_{\hat{\mathbf{v}}}\|\mathbf{r}_{\mathsf{LSPG}}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n-\ell}\|_{2}$$

+ LSPG sequentially minimizes the error bound

LSPG performance

+ LSPG is far more accurate than Galerkin

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- *low cost*: reduce temporal complexity [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- **Structure preservation** [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- * certification: machine learning error models [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Charbel Farhat (Stanford) Julien Cortial (Stanford)

Wall-time problem

- High-fidelity simulation: 1 hour, 48 cores
- Fastest LSPG simulation: 1.3 hours, 48 cores

Why does this occur?
Can we fix it?

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

Can we select A to make this less expensive?

- ullet **Training:** collect residual tensor \mathcal{R}^{ijk} while solving ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$
- Machine learning: compute residual PCA Φ_r and sampling matrix P
- **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+\mathbf{P}\mathbf{r}^n$

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

Can we select A to make this less expensive?

- ullet **Training:** collect residual tensor \mathcal{R}^{ijk} while solving ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$
- Machine learning: compute residual PCA Φ_r and sampling matrix P
- **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+\mathbf{P}\mathbf{r}^n$

Sample mesh [C., Farhat, Cortial, Amsallem, 2013]

+ HPC on a laptop

vorticity field

pressure field

LSPG ROM with

$$\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathbf{r}})^{+}\mathbf{P}$$

32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

Implemented in three computational-mechanics codes at Sandia

Ahmed body [Ahmed, Ramm, Faitin, 1984]

→ Unsteady Navier-Stokes → Re = 4.3×10^6 → M_∞ = 0.175

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5} \text{s}$
- 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

sample mesh

+ HPC on a laptop

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathbf{r}})^{+}\mathbf{P}$

4 hours, 4 cores

high-fidelity model 13 hours, 512 cores

+ 438x savings in core—hours

+ Largest nonlinear dynamical system on which ROM has ever had success

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
- Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Youngsoo Choi

Syuzanna Sargsyan (U Washington)

Finite-volume method

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

$$x_{\mathcal{I}(i,j)}(t) = \frac{1}{|\Omega_j|} \int_{\Omega_j} u_i(\vec{x}, t) d\vec{x}$$

average value of conserved variable i over control volume j

$$f_{\mathcal{I}(i,j)}(\mathbf{x},t) = -\frac{1}{|\Omega_j|} \int_{\Gamma_j} \underbrace{\mathbf{g}_i(\mathbf{x};\vec{x},t)}_{\text{flux}} \cdot \mathbf{n}_j(\vec{x}) \, d\vec{s}(\vec{x}) + \frac{1}{|\Omega_j|} \int_{\Omega_j} \underbrace{\mathbf{s}_i(\mathbf{x};\vec{x},t)}_{\text{source}} \, d\vec{x}$$

flux and source of conserved variable i within control volume j

$$r_{\mathcal{I}(i,j)} = \frac{dx_{\mathcal{I}(i,j)}}{dt}(t) - f_{\mathcal{I}(i,j)}(\mathbf{x},t)$$

rate of conservation violation of variable i in control volume j

O
$$\Delta E$$
: $\mathbf{r}^n(\mathbf{x}^n) = 0$, $n = 1, ..., N$

$$r_{\mathcal{I}(i,j)}^n = x_{\mathcal{I}(i,j)}(t^{n+1}) - x_{\mathcal{I}(i,j)}(t^n) + \int_{t^n}^{t^{n+1}} f_{\mathcal{I}(i,j)}(\mathbf{x},t) dt$$

conservation violation of variable i in control volume j over time step n

Conservative model reduction [C., Choi, Sargsyan, 2018]

Galerkin

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2}$$

 min. sum of squared conservation-violation rates

LSPG

$$\mathbf{\Phi}\hat{\mathbf{x}}^n = \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{argmin}} \|\mathbf{Ar}^n(\mathbf{v})\|_2$$

- min. sum of squared
 conservation violations over time step n
- Neither enforces conservation!

Conservative Galerkin

minimize
$$\|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_2$$

 $\mathbf{v} \in \mathsf{range}(\Phi)$

subject to
$$Cr(v, x; t) = 0$$

 min. sum of squared conservation-violation rates subject to zero conservation-violation rates over subdomains

Conservative LSPG

minimize
$$\|\mathbf{Ar}^n(\mathbf{v})\|_2$$
 $\mathbf{v} \in \mathsf{range}(\Phi)$

subject to
$$\mathbf{Cr}^n(\mathbf{v}) = \mathbf{0}$$

 min. sum of squared conservation violations over time step n subject to zero conservation violations over time step n over subdomains

- + Conservation enforced over subdomains!
- Experiments: enforcing global conservation can reduce error by 10X

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models

 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Kookjin Lee

Model reduction can work well...

vorticity field

pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_r)^+\mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- 1) Linear-subspace assumption is strong
- 2) Accuracy limited by information in Φ

Model reduction can work well...

vorticity field

pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_r)^+\mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- 1) Linear-subspace assumption is strong <-
- 2) Accuracy limited by information in Φ

Kolmogorov-width limitation of linear subspaces

$$d_p(\mathcal{M}) := \inf_{\mathcal{S}_p} P_{\infty}(\mathcal{M}, \mathcal{S}_p) \qquad P_{\infty}(\mathcal{M}, \mathcal{S}_p) := \sup_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_p} \|\mathbf{x} - \mathbf{y}\|$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

32

Kolmogorov-width limitation of linear subspaces

$$\tilde{d}_{p}(\mathcal{M}) := \inf_{\mathcal{S}_{p}} P_{2}(\mathcal{M}, \mathcal{S}_{p}) \qquad P_{2}(\mathcal{M}, \mathcal{S}_{p}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}_{p}} \|\mathbf{x} - \mathbf{y}\|^{2} / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^{2}}$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \ \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all *p*-dimensional linear subspaces

- Kolmogorov-width limitation: significant error for $p = \dim(\mathcal{M})$

Overcoming Kolmogorov-width limitation

Manually transform the linear subspace [Ohlberger and Rave, 2013; Iollo and Lombardi, 2014; Cagniart et al., 2019; Reiss et al., 2018; Welper, 2017; Mojgani and Balajewicz, 2017; Gerbeau and Lombardi, 2014; Nair and Balajewicz, 2019]

- + Works well on specialized problems
- Requires problem-specific knowledge
- Does not consider manifolds of general nonlinear structure

Local linear subspaces

[Dihlmann et al., 2011; Drohmann et al., 2011; Taddei et al., 2015; Amsallem et al., 2012; Peherstorfer and Willcox, 2015]

- + Tailored bases for regions of time/physical domain or state space
- Does not consider manifolds of general nonlinear structure

Model reduction on nonlinear manifolds [Gu, 2011; Kashima, 2016; Hartman and Mestha, 2017]

- Kinematically inconsistent [Kashima, 2016; Hartman and Mestha, 2017]
- Limited to piecewise linear manifolds [Gu, 2011]
- Solutions lack optimality [Gu, 2011; Kashima, 2016; Hartman and Mestha, 2017]

Goals

Overcome shortcomings of existing methods

- + Enable nonlinear manifolds with general nonlinear structure
- + Kinematically consistent
- + Satisfy optimality property

Practical nonlinear-manifold construction

- + No problem-specific knowledge required
- + Use same snapshot data as typical linear-subspace approaches

Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders [Lee and C., 2018]

Nonlinear trial manifold

Linear trial subspace

$$\mathsf{range}(\mathbf{\Phi}) := \{\mathbf{\Phi}\hat{\mathbf{x}} \,|\, \hat{\mathbf{x}} \in \mathbb{R}^p\}$$

example x_3 N=3p=2

state

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t) \in \text{range}(\mathbf{\Phi})$$

velocity
$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} \in \text{range}(\mathbf{\Phi})$$

Nonlinear trial manifold

$$\mathcal{S} := \{ \mathbf{g}(\hat{\mathbf{x}}) \, | \, \hat{\mathbf{x}} \in \mathbb{R}^p \}$$

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$

+ manifold has general structure

$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}} \mathcal{S}$$

+ kinematically consistent

Manifold Galerkin and LSPG projection

Linear-subspace ROM

Nonlinear-manifold ROM

Galerkin
$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^{n}}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \operatorname{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \operatorname{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\mathbf{A}\mathbf{r}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}$$

$$\mathbf{LSPG} \qquad \hat{\mathbf{x}}^{n} = \underset{\mathbf{argmin}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{r}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}$$

 $\hat{\mathbf{v}} \in \mathbb{R}^p$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{Ar}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

+ Satisfy optimality properties

How to construct manifold $\mathcal{S}:=\{\mathbf{g}(\hat{\mathbf{x}})\,|\,\hat{\mathbf{x}}\in\mathbb{R}^p\}$ from snapshot data?

Deep autoencoders

Deep autoencoders

Encoder $h_{enc}(\cdot; \boldsymbol{\theta}_{enc})$ Decoder $h_{dec}(\cdot; \boldsymbol{\theta}_{dec})$

$$\tilde{\mathbf{x}} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}_{\mathsf{dec}}) \circ \mathbf{h}_{\mathsf{enc}}(\mathbf{x}; \boldsymbol{\theta}_{\mathsf{enc}})$$

+ If $ilde{\mathbf{x}} pprox \mathbf{x}$ for parameters $m{ heta}_{ ext{dec}}^\star$, $\mathbf{g} = \mathbf{h}_{ ext{dec}}(\cdot;m{ heta}_{ ext{dec}}^\star)$ produces an accurate manifold

Algorithm

- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. Reduction: Solve manifold Galerkin or LSPG for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Algorithm

- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. Reduction: Solve manifold Galerkin or LSPG for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

- Compute $m{ heta}^\star$ by approximately solving minimize $\|\mathbf{X}_{(1)} \mathbf{X}_{(1)}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\text{dec}}(\cdot; \boldsymbol{\theta}_{\text{dec}}^{\star})$
- + No problem-specific knowledge required
- + Same snapshot data

Algorithm

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. *Reduction:* Solve manifold Galerkin or LSPG for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

- Compute $m{ heta}^\star$ by approximately solving $\min_{m{ heta}} \|\mathbf{X}_{(1)} \mathbf{X}_{(1)}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}^{\star}_{\mathsf{dec}})$
- + No problem-specific knowledge required
- + Same snapshot data

Numerical results

1D Burgers' equation

$$\frac{\partial w(x,t;\boldsymbol{\mu})}{\partial t} + \frac{\partial f(w(x,t;\boldsymbol{\mu}))}{\partial x} = 0.02e^{\alpha x}$$

2D Chemically reacting flow

$$\frac{\partial \mathbf{w}(\vec{x}, t; \boldsymbol{\mu})}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu}))$$
$$- \mathbf{v} \cdot \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu}) + \mathbf{q}(\mathbf{w}(\vec{x}, t; \boldsymbol{\mu}); \boldsymbol{\mu})$$

- μ : α , inlet boundary condition
- Spatial discretization: finite volume
- Time integrator: backward Euler

- μ : two terms in reaction
- Spatial discretization: finite difference
- Time integrator: BDF2

decoding $\mathbf{g}(\hat{\mathbf{x}})$

Results: nonlinear manifold interpretation

1D Burgers' equation t = 13.16, $(\mu_1, \mu_2) = (4.53, 0.015)$

conserved variable w 6 2 20 0 40 60 80 100 spatial variable x

2D Chemically reacting flow

t = 0.023, $(\mu_1, \mu_2) = (6.5e+12, 9.0e+03)$

Manifold LSPG outperforms optimal linear subspace 1D Burgers' equation 2D Chemically reacting flow

high-fidelity model

projection onto optimal linear subspace p=5

POD-LSPG p=5

Manifold LSPG p=5

20

80

100

Method overcomes Kolmogorov-width limitation

+ Autoencoder manifold significantly better than optimal linear subspace

Method overcomes Kolmogorov-width limitation

- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG

Method overcomes Kolmogorov-width limitation

- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
- + Method overcomes Kolmogorov-width limitation

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Model reduction can work well...

vorticity field

pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P} \mathbf{\Phi}_r)^+ \mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core-hours
- + < 1% error in time-averaged drag

... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- 1) Linear-subspace assumption is strong
- 2) Accuracy limited by information in ϕ

Illustration: inviscid 1D Burgers' equation

high-fidelity model

Illustration: inviscid 1D Burgers' equation

high-fidelity model

reduced-order model

reduced-order model inaccurate when Φ insufficient

Main idea [C., 2015]

Model-reduction analogue to mesh-adaptive h-refinement

'Split' basis vectors

finite-element h-refinement

Generate hierarchical subspaces

reduced-order-model h-refinement

Converges to the high-fidelity model

Illustration: inviscid 1D Burgers' equation

high-fidelity model

reduced-order model (dim 50)

5.5 5.5 4.5 90 4.5 3.5 2.5 2 1.5 50 100 150 200 250 spatial variable

h-adaptive ROM (mean dim 48.5)

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: reduce temporal complexity
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- robustness: projection onto nonlinear manifolds [Lee, C., 2018]
- robustness: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019]

Brian Freno

Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,
- 3. A backward differentiation formula (BDF) time integrator is used,
- 4. LSPG employs $\mathbf{A} = \mathbf{I}$, then

$$\begin{aligned} &\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n}\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1, \dots, N\}} \|\mathbf{r}_{\mathsf{G}}^{j}(\mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{j})\|_{2} \\ &\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1, \dots, N\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{\mathsf{LSPG}}^{j}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} \end{aligned}$$

Can we use these error bounds for error estimation?

- grow exponentially in time
- deterministic: not amenable to uncertainty quantification

Main idea

Observation: residual-based quantities are informative of the error

So, these are good features: can predict the error with low variance

Idea: Apply machine learning regression to generate a mapping from residual-based quantities to a random variable for the error

Machine-learning error models

Machine-learning error models: formulation

$$\delta(\boldsymbol{\mu}) = \underbrace{f(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{deterministic}} + \underbrace{\epsilon(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{stochastic}}$$

- features: $ho(\mu) \in \mathbb{R}^{N_{
 ho}}$
- regression function: $f(\rho) = E[\delta | \rho]$
- noise: $\epsilon(\rho)$

$$\tilde{\delta}(\boldsymbol{\mu}) = \underbrace{\tilde{f}(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{deterministic}} + \underbrace{\tilde{\epsilon}(\boldsymbol{\rho}(\boldsymbol{\mu}))}_{\text{stochastic}}$$

- regression-function model: $\tilde{f}(\approx f)$
- noise model: $\tilde{\epsilon} (\approx \epsilon)$
- Desired properties in error model §
 - 1. cheaply computable: features $\rho(\mu)$ are inexpensive to compute
 - 2. low variance: noise model $\tilde{\epsilon}(\rho)$ has low variance
 - 3. generalizable: empirical distributions of δ and $\tilde{\delta}$ 'close' on test data

Training and machine learning: error modeling

- 1. *Training:* Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. Reduction: predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Training and machine learning: error modeling

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

- randomly divide data into (1) training data and (2) testing data
- ullet construct regression-function model $ilde{f}$ via cross validation on **training data**
- construct noise model $\tilde{\epsilon}$ from sample variance on **test data**

Reduction

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

$$ilde{m{q}_{HFM}^n(\mu)} = ext{} e$$

* Statistical model of high-fidelity-model output

Use error analysis to engineer features ρ^n

- high-fidelity model dimension: 2.8×10^5
- reduced-order model dimensions: 1, ..., 5
- $ightharpoonup inputs~\mu$: elastic modulus, Poisson ratio, applied pressure
- quantities of interest: y-displacement at A, radial displacement at B
- training data: 150 training examples, 150 testing examples

radial displacement at B $\log_{10}(1-R^2)$

parameters (model-discrepancy approach): large variance

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly
- + gappy PCA of the residual: nearly as low variance, but much cheaper

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
- PCA of the residual: lowest variance overall but costly
- + gappy PCA of the residual: nearly as low variance, but much cheaper
- + neural networks and SVR: RBF yield lowest-variance models

Our research

accuracy: LSPG projection

K. Carlberg, M. Barone, and H. Antil. "Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction," Journal of Computational Physics, Vol. 330, p. 693–734 (2017).

low cost: sample mesh

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallam. "The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows," Journal of Computational Physics, Vol. 242, p. 623–647 (2013).

low cost: reduce temporal complexity

Y. Choi and K. Carlberg. "Space—time least-squares Petrov—Galerkin projection for nonlinear model reduction," SIAM Journal on Scientific Computing, Vol. 41, No. 1, p. A26—A58 (2019).

structure preservation

K. Carlberg, Y. Choi, and S. Sargsyan. "Conservative model reduction for finite-volume models," Journal of Computational Physics, Vol. 371, p. 280–314 (2018).

robustness: projection onto nonlinear manifolds

K. Lee and K. Carlberg. "Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders," arXiv e-Print, 1812.08373 (2018).

robustness: h-adaptivity

K. Carlberg. "Adaptive h-refinement for reduced-order models," International Journal for Numerical Methods in Engineering, Vol. 102, No. 5, p.1192–1210 (2015).

certification: machine learning error models

B. Freno and K. Carlberg. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations," Computer Methods in Applied Mechanics and Engineering, accepted (2019).

Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525