Convolutional autoencoders and LSTMs
Using deep learning to overcome Kolmogorov-width limitations and
accurately model errors in nonlinear model reduction
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High-fidelity simulation

+Indispensable in science and engineering
- Extreme-scale models required for high fidelity

Nonlinear model reduction Kevin Carlberg 2



High-fidelity simulation

+Indispensable in science and engineering
- Extreme-scale models required for high fidelity

+ High fidelity: matches wind-tunnel experiments to within 5%
- Extreme scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Many-query problems

® uncertainty propagation e Bayesian inference e stochastic optimization

Goal: break computational barrier
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Approach: exploit simulation data

ODE: — =f(x;t,p), x(0,) =xo(s), t €0, Thnal, pme€D

Many-query problem: solve ODE for p € Dqyery

Idea: exploit simulation data collected at a few points
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1. Training: Solve ODE for g € Dirining and collect simulation data

(IS unery \ Dtraining
dx

= f(x;t, 1)

number of

time steps T
+—>

A

number of
state variables N
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1. Training: Solve ODE for g € Dirining and collect simulation data

(IS unery \ Dtraining
dx

ODE:

= f(x;t, 1)
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1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for tt € Dquery \ Dtraining

X.IU | ’

® columns are principal components of the spatial simulation data
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3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining
x(t) ~ x(t) = ® x(t) ODE Galerkin ODE

dx residual dx Ter o n
I dr f(x )) minimization CE = e t))
{

G = x t _) —(Cbx t) = argmin |[r(v, ®x, t)||
vErange(®P)

2
wosaton |
1SPG OAE discret'lzat'lon d/scret'lzat'/on
[C., Bou-Mosleh, Farhat, 2011] OAE Galerkin OAE
[ oz = arg min Hrn(")”2j <_residual r"(x") =0 & r"(®%") = 0
nvfrznge(q))T minimization\| n =1 ... T n=1,..., T
. =1,.., y

» ODE residual: r (v, x, t) := v — f(x, t) )
» OAE residual: r"(w) := apw — AtBof(w, t") + Z ajx" AtZﬁj n—J t”_j)

Jj=1
» Other residual- mlnlmlzmg ROMS [LeGresley and Alonso, 2000; Bui Thanh et aI 2008;

Bui-Thanh et al., 2008; Constantine and Wang, 2012; Choi and C.; 2019; Parish and C., 2019]

Nonlinear model reduction Kevin Carlberg 6



Captive carry

.
oooooooo
¢

*» Unsteady Navier—Stokes »Re=6.3x10® *» Mo

=0.6
Spatial discretization Temporal discretization
» 2nd-order finite volume » 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 1073
» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances

Nonlinear model reduction Kevin Carlberg 7



I_S PG ROM W|th Samp‘e ' eSh [C., Farhat, Cortial, Amsallem, 2013]

&x" = argmin [|[r"(v)|le
vErange(®)

sample

+ HPC on a laptop

vorticity field

LSPG ROM
32 min, 2 cores

.
(&=

high-fidelity |
5 hours, 48 cores { .

+229x savings in core—hours
+< 1% error in time-averaged drag

... SO why doesn’t everyone use ROMs?
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Outstanding challenges in model reduction
1) Linear-subspace assumption is strong
X(t) ~ x(t) = ®x(t)
» Lee and C. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders.” J Comp Phys, 404:108973, 2020.

2) Important physical properties not satisfied

. Galerkin LSPG
dx .
O (x )= argmin [r(v.x; )2 0z = argmin [¢"(v)]l
vErange(®) vErange(®d)

» C., Choi, and Sargsyan. “Conservative model reduction for finite-volume
models.” J Comp Phys, 371:280-314, 2018.

» Lee and C. “Deep conservation: A latent dynamics model for exact satisfaction
of physical conservation laws .” arXiv e-print 1909.09754, 20109.

3) Error analysis difficult

» Freno and C. “Machine-learning error models for approximate solutions to
narameterized systems of nonlinear equations.” CMAME, 348:250-296, 2019.
» Parish and C. “Time-series machine-learning error models for approximate
solutions to parameterized dynamical systems.” arXiv e-print, (1907.11822).
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X(t) ~ x(t) = ®x(t)
» Lee and C. “Model reduction of dynamical systems on nonlinear manifolds
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Erange(®) crange(®)
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Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp 1 set of all p-dimensional linear subspaces

» dp(M) = Slgg Po(M,S), Psc(M,S) : = sup inf inf ||x —y|

Nonlinear model reduction Kevin Carlberg 11



Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp : set of all p-dimensional linear subspaces

Gp(M) = Bl Pa(M.S) , Pa(M,S) 1= |3 int I/ | 3 Il
100; , , , , ........ ap(_/\/l)
| Py(M, range(®))

-
.0

relative error
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*
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*
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reduced dimension p
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Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp : set of all p-dimensional linear subspaces

’ Zfp(/\/l) F= Slgg Py(M,S) |, P2(M,S) Z mf |x — yl|?/ Z 1x]|2
’ xeM” xEM
10 %\‘xxx; x x : ........ dp(M)
S 1022_ \\ ~= Py(M, range(®))
= closureerror|
v \\\\ ) \/er/\/t ||x _ )~(LSPG||2
= Vi em X[
O :
L
1076}

5 10 15 20 25

reduced dimension p
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Kolmogorov-width limitation of linear subspaces

» M= {x(t, ) |t €10, Ttnal], p € D}: solution manifold
» O @ set of all p-dimensional linear subspaces

' ap(~/\/l) = inf Py(M,S) , P2(M,S) Z mf |x —yl|?/ Z ]2
SES, Ly )
10);)():()()( x x , ........ dp(_/\/l)
N | é
.}\"% 1
§ 1072} Jl‘\\\ s (./\/l, range(d)))
— F | ‘%l,j\
& | e X — X 2
L Kolmogorov—w:dth Vel LSZPG”
B o | 3 \/ZXEM HXH
© | limitation
v |
o 10_6; : i dlm(./\/l)
3 5 10 15 20 25

reduced dimension p
- Kolmogorov-width limitation: significant error for p = dim(M)

Goal: overcome limitation via projection onto a nonlinear manifold
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Overcoming Kolmogorov-width limitation

Transform/update the linear subspace

[Ohlberger and Rave, 2013; lollo and Lombardi, 2014; Gerbeau and Lombardi, 2014; Peherstorfer and Willcox, 2015;

Welper, 2017; Mojgani and Balajewicz, 2017; Reiss et al., 2018; Zimmermann et al., 2018; Peherstorfer, 2018; Rim
and Mandli, 2018; Rim and Mandli, 2018; Nair and Balajewicz, 2019; Cagniart et al., 2019]

+ Can work much better than a fixed basis

- Some require problem-specific knowledge or characteristics
- Do not consider manifolds of general nonlinear structure
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Overcoming Kolmogorov-width limitation

A priori construction of local linear subspaces
[Dihlmann et al., 2011; Drohmann et al., 2011; Amsallem, Zahr, Farhat, 2012; Peherstorfer et el., 2014; Taddei et al., 2015]

+ Tailored bases for local regions of space/time domain, state space
- Do not consider manifolds of general nonlinear structure
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Overcoming Kolmogorov-width limitation

Model reduction on nonlinear manifolds (cu, 2011; kashima, 2016; Hartman and Mestha, 2017]
- Kinematically inconsistent [kashima, 2016; Hartman and Mestha, 2017]

- Limited to piecewise linear manifolds (cu, 2011]

- Solutions lack optimality [6u, 2011; kashima, 2016; Hartman and Mestha, 2017]
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Goals

Overcome shortcomings of existing methods
+ Enable manifolds with general nonlinear structure
+ Kinematically consistent

+ Satisfy optimality property
Manifold Galerkin and LSPG projection

Practical nonlinear-manifold construction
+ No problem-specific knowledge required
+ Use same training data as POD

Deep convolutional autoencoders
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Nonlinear trial manifold

Linear trial subspace Nonlinear trial manifold

range(®) := {®dx|x € RP} S :={g(x)|x € RP}
example x
N=3
p=2

state  x(t) ~%(t) = DK(t) € range(®)  x(t) m k(1) = g(X(1)) € S
I

| 1B | |0

+ Manifold has general structure

, dx  dx dx dx  dx . dx
velocity —- =~ =®_-¢ range(®) N = Vg(x)a e TS

+ Kinematically consistent
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1. Training: Solve ODE for u & and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

Linear-subspace ROM Nonlinear-manifold ROM

Given ® Given g(x)
. dx . o X
Galerkin = == = argmin||r(®v, ®%; t)]| ax _ argmin||r(Vg(X)7, g(X); t)]|2
dt JERP dt JERP
0 0
T _ oTH(ds; ax
P (Px; t) E—Vg()f(()t)
LSPG x" = argmin|[r"(dv)||5 x" = argmin||r"(g(v))||2
VERP vERP

+ Satisfy residual minimization

Manifold Galerkin and manifold LSPG are equivalent if

1. the nonlinear trial manifold S is twice continuously differentiable,
2. |X"7 = %"|| = O(At) forn=1,..., T and j=1,..., k, and

3. the limit At — 0is taken.
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Error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. At is small enough such that 0 < h := |on| |Bo|kAL, then

%" — gRE)l2 < i (g(ke)) ]2t Zmux" ¢ g(xe)ls

. 1. () -
[x" — g(Xispe)ll2 <  min [|rispe(g(¥))l2+ ZWH\X” g(XLspa)|l2

+ Manifold LSPG sequentially minimizes the error bound

How to construct manifold S := {g(x) | x € RP} from training data?
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Goals

Overcome shortcomings of existing methods

+ Enable manifolds with general nonlinear structure
+ Kinematically consistent

+ Satisfy optimality property

Manifold Galerkin and LSPG projection

Practical nonlinear-manifold construction
+ No problem-specific knowledge required
+ Use same training data as POD

Deep convolutional autoencoders

S i= {g(%)| % € RP}

Nonlinear model reduction Kevin Carlberg 18




Deep autoencoders

Input layer Code Output layer
X1
X2
"\ %
X4 ."\\ //"‘ %4
- ““‘o""““ %
- ’0/’ \\0’

0-' \0

Encoder henc(-;0c.nc) Decoder hyec(-; O4ec)
X = hdec('§ Hdec) O henc (X§ Henc)

+If X & xfor @7__, then & = hgec(+; 0}.) is accurate manifold parameterization
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1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for tt € Dquery \ Dtraining

» Compute 8™ by approximately solving miniemize||X — X(0)||F
» Define nonlinear trial manifold by setting g = hgec(-; 0. )

+ Same snapshot data, no specialized problem knowledge
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1. Training: Solve ODE for u €

and collect simulation data

2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

Given
. argmin|[r(®v, ®x; t)|]
— | ‘
dt - 12
()
d T
— = O f(dx;t
dt ( X7 )

= argmin|[r"(dv)||;
cIRP

Nonlinear model reduction

Manifold ROM
Given g(X)

d5 | RO
= arAgmlnHr(Vg(X)V, g(x);t)|l2

vVERP

)
AX N E (o (%),
— = Veg(x) f(g(x);t)

x" = argmin||¥f(g(V))][2
JERP
+ Satisfy residual minimization
+ Predictions directly integrate
deep learning with

computational physics

Kevin Carlberg 21




Numerical results

1D BUI’QGI’S, equation 2D reacting flow
. . ow(X, t; .
Owlx, tip) | WO tim) g ooox PMEER) _ g (epw(s, ;)
ot Ox t B _
—v-Vw(X, t; p) + q(w(X, t; p); 1)
» W @, inlet boundary condition > JL:two terms in reaction

» Spatial discretization: finite volume » Spatial discretization: finite difference

* Time integrator: backward Euler * Time integrator: BDF2

Autoencoder architecture

g /éll Ilﬁ/

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers
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Manifold interpretation: Burgers’ equation

FOM POD, p=3 Autoencoder, p=3
projection projection
t=22.61, (u, i2) =(4.39,0.015) t= 2261, (u, (2} = (4.39,0.015)

solution reconstruction reconstruction

-/\/ 4‘/\_/
1 L | ) 0
20 40 60 30 100

spatial variable x

(o))
]

-

Z

o

0

0 Zb 4'0 6'0 8I0 100
spatial variable x

0 2'0 42) 60 8'0 100
spatial variable x

o

conserved variable w
conserved variable w
NN

conserved variable w
N

+ Projection error onto 3-dimensional manifold nearly perfect
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Manifold LSPG outperforms optimal linear subspace

1D Burgers’ equation
conserved variable

high-fidelity _
model : \/
POD-LSPG 4 \/\/
p=5 2

Manifold LSPG .
p=>

0

0 20 30 60 80 100
X

Nonlinear model reduction

2D reacting flow

temperature H; fraction
C.9 0.9
1500 02
- =
201
500
C.0 0.C 0.0C
0.0 18 0.0 IN.
0.9 neg
1500
002
1000
001
200
0.0 0u Juu
0.0 1.8
0.9 0.9
1500
002
1000
001
=00
0.C 2.00
0.0 1.8
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Method improves generalization performance

Burgers’ equation

10° = 10° —— ] e dp(./\/l)
L | X x
| | | ——.
S EW < Pa(M, range(®))
1| % Lt oI
= 107 £ | T - x subspace LSPG
GJ - \"\,‘x ] "’.?:\. I .
o : S . e |1 dim(M)
> * \‘)-(\,.. | ’..”. "\~\~
. o || L N X S - = 1
LEU 10-2 : «s..,,_%\ |0 2| : * * —e S = (M, 8)
8 | -.""-.;-( | '~......’.’ E
| | e
10—3 _4’ : 103 _ : ........
: |-)|6* ] g | 3
R S S | L | | |
35 10 20 30 40 50 3 5 10 15 20 25
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace
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Method improves generalization performance

Burgers’ equation Reacting flow

109

) )— P> (M, range(®))

S

@)

- - x subspace LSPG
) RN I .

O Ny ——_ dim(M)

> .’.”.. "\.\~\.\

K

S

............. .+ manifold LSPG

.
.
*
* -
o,
0.-
-

~
B
- | *

3&I’> 1IO 2IO ] 3IO 4%0 50
reduced dimension p r

3 10 15 20 25

duced dimension p

|
|
|
|
|
|
|
|
3
e

+ Autoencoder manifold significantly better than optimal linear subspace
+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
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Method improves generalization performance

Burgers’ equation

100F|I 100Ex>|<xx ........ dp(M)
| | X X
- x: f.;\.;}\‘:\ ! - Py (M, range(®))
O B *e‘x - |"~; . .
0 R 107 e - x subspace LSPG
GJ | \,‘\\ N | 0“.’.\:\~ I .
iy : RN * | AN | dlm(./\/l)
> " \..).(‘ — | ’.’0,.. .\~\~\ .
-([30 10—2;: .x\\&\ 1 102 T** ot LS | PQ(M,S)
- T ] : 3
—_— | \'nx,,.\ I T .
Q : ¥ R manifold LSPG
o e |
o T B e L N M
10y, R
I e I
35 10 20 30 40 50 3 5 10 15 20 25
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace
+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
+ Method breaks Kolmogorov-width barrier
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Method improves generalization performance

Reacting flow

100“ . . 100,&9%95 T I e dp(M)
_ | | T\r\ ° —— Py(M, range(®))
o T |
S o0 SERTE S  N ~ x subspace LSPG
O | x\\\ ; S . : S | .
GJ | 8"\._.8 5* | ’~.0‘.\‘\~\ E : dlm(./\/l)
> 4 . = el |
.-CDU 102 | : .*\."'2-\,\9‘ _: 10_2;_ T * * ale \*\.\.\.:; % P2 (M’ S)
v | g, ] S ] .
w i - S S manifold LSPG
| - S5 R | .
10 Ly B T | © subspace Galerkin
t*\f— — | S | | | | manifold Galerkin
35 10 20 ] 30 4%0 50 3 5 10 ] 15 .2() 25
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace
+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
+ Method breaks Kolmogorov-width barrier

+ Manifold LSPG outperforms on 1D Burgers’ equation
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Outstanding challenges in model reduction
1) Linear-subspace assumption is strong
x(t) ~ = ¢
» Lee and C. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders.” ] Comp Phys, 404:108973, 2020.

2) Important physical properties not satisfied

. Galerkin LSPG
ax .
O (xt)= argmin [r(v.xit)l2 0" = argmin [r"(v)]|2
vErange(®P) vErange(®)

» C., Choi, and Sargsyan. “Conservative model reduction for finite-volume
models.” ] Comp Phys, 371:280-314, 2018.

» Lee and C. “Deep conservation: A latent dynamics model for exact satisfaction
of physical conservation laws .” arXiv e-print 1909.09754, 20109.

3) Error analysis difficult

» Freno and C. “Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations.” CMAME, 348:250-296, 2019.

» Parish and C. “Time-series machine-learning error models for approximate
solutions to parameterized dynamical systems.” arXiv e-print, (1907.11822).
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Finite-volume method

[ ODE: ax _ f(x;t)

dt
XI(,J) ’QJ‘/ U,(X t)dX

» average value of conserved variable j over control volume j

(% ) = ~ 15 / 8. (x: %, t) -n; (%) d5(%) - ‘éj /Qs,-(x;z, ) d%

A/—/ | N——
flux source
» flux and source of conserved variable i within control volume j
dXI(,
ree,j) = (t) — fri jy(x, t)

» rate of conservation violation of variable j in control volume
(OAE: r"(x)=0, n=1,..,N]

tn+1
_ +1
7y = Xz (") = xzp(E7) + friij)(x, t)dt
tn
» conservation violation of variable j in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods
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Conservative manifold model reduction

Manifold Galerkin Manifold LSPG
m|n|m|ze |r(Vg(x)v; g(X);t)]]2 x" = argmin||r"(g(V))][2
clRP veRP
» Minimize conservation-violation rates » Minimize conservation violations

over time step n
- Neither enforces conservation!

Conservative manifold Galerkin Conservative manifold LSPG
m|n|m|zeHr(Vg(x)v g(x);t)]- m|n|m|zeHr (2(7))]]2

4
» Minimize conservation-violation rates Minimize conservation violations
over time step n subject to zero

(S)l‘JIZJreSC;;‘;;fnrgirc‘cs)”Servat'on'V'OIat'on rales  onservation violations over time step
n over subdomains
prescribed

ww[ ! ! ! subdomains
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Discrete-time error bound (linear subspaces)

The error in the conserved quantities computed with either
conservative Galerkin or conservative LSPG can be bounded as:

k
~(.,Nn AN |5n|At
IC(x" — ®x")|]2 <>
£=0

g
k
3
/=1

|CF(x""*) — CF(®X" )]

n
’Oéﬁ‘ Hc(xn—ﬁ - q))/zn—ﬁ)Hz
ag)

» Error depends only on velocity error on decomposed mesh
+ No source, global conservation: error due to flux error along boundary!

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 29



High-fidelity model Reduced-order models

POD subspace Autoencoder manifold
2 6 - Vg - Vg
3 = 3
E @ @
T 4 - i -
© S 4 S 4
E B g
Q Q
23 52 22
3 Q Q
- U" W
| - | -
8 0 ! ' ' ! OO0 T T T T O 0 T T T T
0 20 4_0 69 80 100 Qo9 20 40 60 80 100 QO 9 20 40 60 80 10¢
spatial variable spatial variable spatial variable
Solution error: 13% Solution error: 0.5%
Conservation violation: 16% Conservation violation: 1%

POD subspace with Autoencoder manifold with
conservation constraints conservation constraints

() Q

- -

L AL —

. — p— —

g 4 ‘A_ g 4 \/

O e

Q Q

C 2 A Z 2 -

Q Q

v (%]

- -

8 0 J 1 ] 1 8 0 1 1 ' 1

0O 20 40 60 80 100 0O 20 40 60 80 100
spatial variable spatial variable
Solution error: 12% Solution error: 0.2%

Conservation violation: <0.001% Conservation violation: <0.001%
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Outlook

Conservative manifold Galerkin Conservative manifold LSPG

minimize [[r(Ve(X)V; g(X); t)])- minimize |[r"(g(V))]2
VEIRP VEIRP

subject to Cr(Vg(X)V;g(Xx);t) =0 subject to Cr"(g(v)) =0
Interpretation

» Integrates computational physics with deep learning
» Projection-based latent dynamics model that enforces conservation

» Nearly all existing methods are data-driven latent dynamics models

[Bohmer et al., 2015; Goroshin et al., 2015; Watter et al., 2015; Karl et al., 2017; Takeishi et al., 2017; Banijamali et al., 2018;
Lesort et al., 2018; Lusch et al., 2018; Morton et al., 2018 Otto and Rowley, 2019]

Gradient computation

» Backpropagation used to compute decoder Jacobian Vg(x)

» Quasi-Newton solvers directly call TensorFlow

Ongoing work

» Hyper-reduction: “easy” because convolutional layers preserve sparsity
» Integration in large-scale code underway in Pressio
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Shortcomings of state-of-the-art ROMs
1) Linear-subspace assumption is strong
x(t) ~ = ¢
» Lee and C. “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders.” ] Comp Phys, 404:108973, 2020.

2) Important physical properties not guaranteed

Galerkin LSPG
®—(x,t) = argmin ||r(v, x; t)]> "= argmin [[r"(v)]>
crange(®) crange(®)

» C., Choi, and Sargsyan. “Conservative model reduction for finite-volume
models.” ] Comp Phys, 371:280-314, 2018.

» Lee and C. “Deep conservation: A latent dynamics model for exact satisfaction
of physical conservation laws .” arXiv e-print 1909.09754, 2019.

3) Error analysis difficult

» Freno and C. “Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations.” CMAME, 348:250-296, 20109.

» Parish and C. “Time-series machine-learning error models for approximate
solutions to parameterized dynamical systems.” arXiv e-print, (1907.11822).
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Discrete-time error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «
2. The time step At is small enough such that 0 < h:= |ag| — |Bo|kAL,

1 n—
Ix" —g(x¢) |2 < —||ré(8(%c))|l2+ Zh 1% — g(%c)||2
1 1 &
X" — g(X'spg)|l2 < min [[rlspc(g(V))[l2+ > Prellx" — g(xispa) 2
/=1

Can we use these error bounds for error estimation?
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Discrete-time error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «
2. The time step At is small enough such that 0 < h := |ag| — |Go|cAL,

71(72)" exp(v3t”) ' .
<. max |[H cpe(8(X-))|]2
2OV O] e o (6(54)

Ix" — g(X(spe)ll2 < 71(72)" exp(y3t”) . -
o Y4 + 75At Jg{TaXN} m\/;m HrJLSPG (g(v))H2

Ix" — g(%¢)]l2

Can we use these error bounds for error estimation?

- grow exponentially in time

- deterministic: not amenable to uncertainty quantification
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Main idea

* Observation: ROMs generate quantities that are informative of the error

TTTT] T T T TTT] T T T T T
— —4 | ®e H4
i z
%3S - i
—
s %
G i |
— = = |
e
—
5E 05| o (rillsull) |-
a m (AT 6w |
Lot | L 1 11 17]

1074

Residual r/error bound

* ML perspective: these are good features for predicting the error

Idea: Apply machine learning regression to generate a mapping from
residual-based quantities to a random variable for the error

Machine-learning error models (rreno and c., 2019; parish and c., 2019
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Machine-learning error models: formulation

What attributes does the ROM error have?
71(72)" exp(3t”) — .
Max min rj Vv
AL et % Ir spc(8(V))ll2
1. Dependence on non-local quantities in time
2. Dependence on the residual

Ix" — g(X(spc)l2 <

Regression model

0" (p) = 0% () + 0 (1)
\‘/—/ \W_/
deterministic stochastic

* regression function: Sﬁ(u) :f(p”(u), (,;,),5?_1(“))
() =gP" (1), n" (), 07 ()

+ latent variables /2" () : enable capturing non-local dependencies

+ features p" () : residual-based (and cheaply computable)
+ general formulation encompasses ARX, LARX, RNN, LSTM, GRU
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Example: long short-term memory (LSTM)
SP(p)=F(p" (), " (w))
P(p) =g (), n" ()

time n-1

layer 2




Training and machine learning: error modeling

2. Machine learning: Construct regression model
IS unery \ Dtraining

mmmmm D" e

n n n
dHFM — 9rOM P

*» randomly divide data into (1) training data and (2) testing data
» construct regression function 3? via cross validation on training data
» construct noise model 0" from sample variance on test data
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Reduction

[UAS Dtraining
2. Machine learning: Construct regression model
3. Reduction: predict reduced-order-model error for p € Dquery \ Drraining

Inputs p — [reduced-order model | — outputs qrom: | D .'. ° ":.
7 n=1 .., T * o ° °
features p", n=1,..., T
|
! ~ regression model A _, machine learning
0" )—5f( ) + 0" () ) error model 5" n=1,..., T
() =g(p" (), (1), ;f Y(n)) » Latent dynamics learning
OF () = F(p" (), " (), 0% ()
- - ™

Irrm () = drom(p) + 0" ()
————r Y =

stochastic deterministic stochastiCJ

Nonlinear model reduction Kevin Carlberg 38




Application: Advection—dittusion equation

GP-
. kNN
IS AN HEEEEEENEE
S ARX (NRT) HEEEEEEE
S ARX (RT) HEEEEEEE
S ANN-I (NRT) HEEEENE
S ANNI (RT) EEEEEEEE
L LARX - ENEEEEEEE _
S [ RNN - HEEEEEEEEE j
LSTM - -
égfé S e -
el A [ R
e O
— 3. S ~ 5 ~ S @w
— & S5 K &
3-: & & <&m T
— 3 = < el
features — = X

+regression methods: classical RNN and LSTM most accurate
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Application: Advection—dittusion equation

GP -
" kNN
S AN HEEEERENE
% ARX (NRT)
S ARX (RT)
S ANN-I (NRT)
% ANN-I (RT)
v LARX -
S RNN -
LSTM 1

=T [ | [

= 2ol

— 3 — s = s

S SEaR S

18T OME

QEE 3 =

features —— X

+regression methods: classical RNN and LSTM most accurate
+features: only 7 residual samples needed for good accuracy
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Questions?

high-fidelity ™ M|
model - o

500

S
=N

%
S5

s
=
7

1500

POD-LSPG
p=>5

1000

500

Manifold LSPG o

1000

p=5

3
o
Q .
o~ .'E_; ' Io.o

E ——0.55
g —l.OE

‘ v . v v v . v v v 5 | —1.5;05
o - - —2.0
QL

features

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National
Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
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