Convolutional autoencoders and LSTMs

Using deep learning to overcome Kolmogorov-width limitations and accurately model errors in nonlinear model reduction

Kookjin Lee

Eric Parish

Kevin Carlberg

University of Washington

Mathematics of Reduced-Order Models
ICERM, Providence, Rhode Island
February 21, 2020

High-fidelity simulation

- +Indispensable in science and engineering
- Extreme-scale models required for high fidelity

High-fidelity simulation

- +Indispensable in science and engineering
- Extreme-scale models required for high fidelity

- + High fidelity: matches wind-tunnel experiments to within 5%
- Extreme scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Many-query problems

uncertainty propagation
 Bayesian inference
 stochastic optimization

Goal: break computational barrier

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Many-query problem: solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$

Idea: exploit simulation data collected at a few points

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Φ columns are principal components of the spatial simulation data

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

ODE

Galerkin ODE

$$\underbrace{\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)}_{\text{minimization}} \underbrace{\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}, t)}_{\mathbf{f}}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}, t)$$

$$\left(\mathbf{r}\left(\frac{d\mathbf{x}}{dt},\mathbf{x},t\right)=\mathbf{0}\right)$$

$$\mathbf{r}\left(\frac{d\mathbf{x}}{dt},\mathbf{x},t\right) = \mathbf{0}\left(\mathbf{\Phi}\frac{d\hat{\mathbf{x}}}{dt}\left(\mathbf{\Phi}\hat{\mathbf{x}},t\right) = \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi})}{\arg\min} \|\mathbf{r}(\mathbf{v},\mathbf{\Phi}\hat{\mathbf{x}},t)\|_{2}\right)$$

time discretization .

time discretization \downarrow

LSPG O∆E

[C., Bou-Mosleh, Farhat, 2011]

$$\begin{aligned} \mathbf{\Phi} \hat{\mathbf{x}}^n &= \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi})}{\text{arg min }} \|\mathbf{r}^n(\mathbf{v})\|_2 \\ n &= 1, \dots, T \end{aligned}$$

ΟΔΕ

$$\mathbf{r}^n(\mathbf{x}^n) = 0$$

 $n = 1, ..., T$

Galerkin O∆E

$$\mathbf{\Phi}^{T}\mathbf{r}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}^{n}) = 0$$

$$n = 1, ..., T$$

- ightharpoonup ODE residual: $\mathbf{r}(\mathbf{v}, \mathbf{x}, t) := \mathbf{v} \mathbf{f}(\mathbf{x}, t)$
- O Δ E residual: $\mathbf{r}^n(\mathbf{w}) := \alpha_0 \mathbf{w} \Delta t \beta_0 \mathbf{f}(\mathbf{w}, t^n) + \sum_{j=1}^{N} \alpha_j \mathbf{x}^{n-j} \Delta t \sum_{j=1}^{N} \beta_j \mathbf{f}(\mathbf{x}^{n-j}, t^{n-j})$
- Other residual-minimizing ROMs [LeGresley and Alonso, 2000; Bui-Thanh et al., 2008; Bui-Thanh et al., 2008; Constantine and Wang, 2012; Choi and C.; 2019; Parish and C., 2019]

Captive carry

→ Unsteady Navier-Stokes → Re = 6.3×10^6 → $M_{\infty} = 0.6$

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

LSPG ROM with sample mesh [C., Farhat, Cortial, Amsallem, 2013]

$$\mathbf{\Phi}\hat{\mathbf{x}}^n = \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{arg}\,\mathsf{min}} \|\mathbf{r}^n(\mathbf{v})\|_{\mathbf{\Theta}}$$

sample mesh

+ HPC on a laptop

vorticity field

pressure field

LSPG ROM
32 min, 2 cores

high-fidelity
5 hours, 48 cores

- + 229x savings in core—hours
- + < 1% error in time-averaged drag

... so why doesn't everyone use ROMs?

Outstanding challenges in model reduction

1) Linear-subspace assumption is strong

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t)$$

Lee and C. "Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders." J Comp Phys, 404:108973, 2020.

2) Important physical properties not satisfied

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2} \qquad \Phi \hat{\mathbf{x}}^{n} = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{v})\|_{2}$$

- C., Choi, and Sargsyan. "Conservative model reduction for finite-volume models." J Comp Phys, 371:280–314, 2018.
- Lee and C. "Deep conservation: A latent dynamics model for exact satisfaction of physical conservation laws." arXiv e-print 1909.09754, 2019.

3) Error analysis difficult

- Freno and C. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations." CMAME, 348:250–296, 2019.
- Parish and C. "Time-series machine-learning error models for approximate solutions to parameterized dynamical systems." arXiv e-print, (1907.11822).

Outstanding challenges in model reduction

1) Linear-subspace assumption is strong

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t)$$

Lee and C. "Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders." J Comp Phys, 404:108973, 2020.

2) Important physical properties not guaranteed

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2} \qquad \Phi \hat{\mathbf{x}}^{n} = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{v})\|_{2}$$

- C., Choi, and Sargsyan. "Conservative model reduction for finite-volume models." J Comp Phys, 371:280–314, 2018.
- Lee and C. "Deep conservation: A latent dynamics model for exact satisfaction of physical conservation laws." arXiv e-print 1909.09754, 2019.

3) Error analysis difficult

- Freno and C. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations." CMAME, 348:250–296, 2019.
- Parish and C. "Time-series machine-learning error models for approximate solutions to parameterized dynamical systems." arXiv e-print, (1907.11822).

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

$$\bullet \ d_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_{\infty}(\mathcal{M}, \mathcal{S}), P_{\infty}(\mathcal{M}, \mathcal{S}) := \sup_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

$$\tilde{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}$$

$$\widetilde{d}_p(\mathcal{M})$$

$$P_2(\mathcal{M}, \mathsf{range}(\mathbf{\Phi}))$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

$$\tilde{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}$$

$$ec{d}_p(\mathcal{M})$$

$$P_2(\mathcal{M}, \mathsf{range}(\boldsymbol{\Phi}))$$

$$\times \frac{\sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x} - \tilde{\mathbf{x}}_{\mathsf{LSPG}}\|^2}}{\sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}}$$

- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

$$\tilde{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}}$$

11

- Kolmogorov-width limitation: significant error for $p = \dim(\mathcal{M})$

Goal: overcome limitation via projection onto a nonlinear manifold

Overcoming Kolmogorov-width limitation

Transform/update the linear subspace

[Ohlberger and Rave, 2013; Iollo and Lombardi, 2014; Gerbeau and Lombardi, 2014; Peherstorfer and Willcox, 2015; Welper, 2017; Mojgani and Balajewicz, 2017; Reiss et al., 2018; Zimmermann et al., 2018; Peherstorfer, 2018; Rim and Mandli, 2018; Rim and Mandli, 2018; Nair and Balajewicz, 2019; Cagniart et al., 2019]

- + Can work much better than a fixed basis
- Some require problem-specific knowledge or characteristics
- Do not consider manifolds of general nonlinear structure

Overcoming Kolmogorov-width limitation

Transform/update the linear subspace

[Ohlberger and Rave, 2013; Iollo and Lombardi, 2014; Gerbeau and Lombardi, 2014; Peherstorfer and Willcox, 2015; Welper, 2017; Mojgani and Balajewicz, 2017; Reiss et al., 2018; Zimmermann et al., 2018; Peherstorfer, 2018; Rim and Mandli, 2018; Rim and Mandli, 2018; Nair and Balajewicz, 2019; Cagniart et al., 2019]

- + Can work much better than a fixed basis
- Some require problem-specific knowledge or characteristics
- Do not consider manifolds of general nonlinear structure

A priori construction of local linear subspaces

[Dihlmann et al., 2011; Drohmann et al., 2011; Amsallem, Zahr, Farhat, 2012; Peherstorfer et el., 2014; Taddei et al., 2015]

- + Tailored bases for local regions of space/time domain, state space
- Do not consider manifolds of general nonlinear structure

Nonlinear model reduction Kevin Carlberg

Overcoming Kolmogorov-width limitation

Transform/update the linear subspace

[Ohlberger and Rave, 2013; Iollo and Lombardi, 2014; Gerbeau and Lombardi, 2014; Peherstorfer and Willcox, 2015; Welper, 2017; Mojgani and Balajewicz, 2017; Reiss et al., 2018; Zimmermann et al., 2018; Peherstorfer, 2018; Rim and Mandli, 2018; Rim and Mandli, 2018; Nair and Balajewicz, 2019; Cagniart et al., 2019]

- + Can work much better than a fixed basis
- Some require problem-specific knowledge or characteristics
- Do not consider manifolds of general nonlinear structure

A priori construction of local linear subspaces

[Dihlmann et al., 2011; Drohmann et al., 2011; Amsallem, Zahr, Farhat, 2012; Peherstorfer et el., 2014; Taddei et al., 2015]

- + Tailored bases for local regions of space/time domain, state space
- Do not consider manifolds of general nonlinear structure

Model reduction on nonlinear manifolds [Gu, 2011; Kashima, 2016; Hartman and Mestha, 2017]

- Kinematically inconsistent [Kashima, 2016; Hartman and Mestha, 2017]
- Limited to piecewise linear manifolds [Gu, 2011]
- Solutions lack optimality [Gu, 2011; Kashima, 2016; Hartman and Mestha, 2017]

Nonlinear model reduction Kevin Carlberg

Overcome shortcomings of existing methods

- + Enable manifolds with general nonlinear structure
- + Kinematically consistent
- + Satisfy optimality property

Manifold Galerkin and LSPG projection

Practical nonlinear-manifold construction

- No problem-specific knowledge required
- + Use same training data as POD

Deep convolutional autoencoders

Nonlinear model reduction Kevin Carlberg

Overcome shortcomings of existing methods

- + Enable manifolds with general nonlinear structure
- + Kinematically consistent
- + Satisfy optimality property

Manifold Galerkin and LSPG projection

Practical nonlinear-manifold construction

- + No problem-specific knowledge required
- + Use same training data as POD

Deep convolutional autoencoders

Nonlinear model reduction Kevin Carlberg

Nonlinear trial manifold

Linear trial subspace

$$\mathsf{range}(\mathbf{\Phi}) := \{\mathbf{\Phi}\hat{\mathbf{x}} \,|\, \hat{\mathbf{x}} \in \mathbb{R}^p\}$$

example
$$x_3$$

 $N=3$
 $p=2$

state

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t) \in \text{range}(\mathbf{\Phi})$$

velocity
$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} \in \text{range}(\mathbf{\Phi})$$

Nonlinear trial manifold

$$\mathcal{S} := \{ \mathbf{g}(\hat{\mathbf{x}}) \, | \, \hat{\mathbf{x}} \in \mathbb{R}^p \}$$

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$

+ Manifold has general structure

$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}} \mathcal{S}$$

+ Kinematically consistent

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Linear-subspace ROM

Given •

Galerkin
$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^{p}}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^{T}\mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)$$

$$LSPG \qquad \hat{\mathbf{x}}^{n} = \underset{\hat{\mathbf{x}} \in \mathbb{D}^{n}}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}$$

Nonlinear-manifold ROM

Given $\mathbf{g}(\hat{\mathbf{x}})$

$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^{p}}{\operatorname{argmin}} \|\mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}, \mathbf{g}(\hat{\mathbf{x}}); t)\|_{2}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}})^{+} \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t)$$

$$\hat{\mathbf{x}}^{n} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^{p}}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{g}(\hat{\mathbf{v}}))\|_{2}$$

+ Satisfy residual minimization

Theorem [Lee, C., 2020]

Manifold Galerkin and manifold LSPG are equivalent if

- 1. the nonlinear trial manifold S is twice continuously differentiable,
- 2. $\|\hat{\mathbf{x}}^{n-j} \hat{\mathbf{x}}^n\| = O(\Delta t)$ for n = 1, ..., T and j = 1, ..., k, and
- 3. the limit $\Delta t \rightarrow 0$ is taken.

Errorbound

Theorem [Lee, C., 2020]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$, then

$$\begin{aligned} \|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{\mathsf{G}}^{n})\|_{2} &\leq \frac{1}{h} \|\mathbf{r}_{\mathsf{G}}^{n}(\mathbf{g}(\hat{\mathbf{x}}_{\mathsf{G}}))\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\gamma_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{g}(\hat{\mathbf{x}}_{\mathsf{G}})\|_{2} \\ \|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n})\|_{2} &\leq \frac{1}{h} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{\mathsf{LSPG}}^{n}(\mathbf{g}(\hat{\mathbf{v}}))\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\gamma_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{g}(\hat{\mathbf{x}}_{\mathsf{LSPG}})\|_{2} \end{aligned}$$

+ Manifold LSPG sequentially minimizes the error bound

How to construct manifold $\mathcal{S}:=\{\mathbf{g}(\hat{\mathsf{x}})\,|\,\hat{\mathsf{x}}\in\mathbb{R}^p\}$ from training data?

Nonlinear model reduction Kevin Carlberg

Overcome shortcomings of existing methods

- + Enable manifolds with general nonlinear structure
- + Kinematically consistent
- + Satisfy optimality property

Manifold Galerkin and LSPG projection

Practical nonlinear-manifold construction

- No problem-specific knowledge required
- + Use same training data as POD

Deep convolutional autoencoders

$$\mathcal{S} := \{ \mathbf{g}(\hat{\mathbf{x}}) \, | \, \hat{\mathbf{x}} \in \mathbb{R}^p \}$$

Nonlinear model reduction Kevin Carlberg

Deep autoencoders

Input layer Code Output layer X_1 \tilde{x}_2 X_2 \tilde{x}_3 X_3 \tilde{x}_4 X_4 \tilde{x}_5 *X*5 \hat{x}_2 \tilde{x}_6 *X*₆ $\tilde{\chi}_7$ *X*7 *X*₈

Encoder $h_{enc}(\cdot; \boldsymbol{\theta}_{enc})$ Decoder $h_{dec}(\cdot; \boldsymbol{\theta}_{dec})$

$$\tilde{\mathbf{x}} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}_{\mathsf{dec}}) \circ \mathbf{h}_{\mathsf{enc}}(\mathbf{x}; \boldsymbol{\theta}_{\mathsf{enc}})$$

+ If $\widetilde{\mathbf{x}} pprox \mathbf{x}$ for $m{ heta}_{ ext{dec}}^{\star}$, then $\mathbf{g} = \mathbf{h}_{ ext{dec}}(\cdot; m{ heta}_{ ext{dec}}^{\star})$ is accurate manifold parameterization

Nonlinear model reduction Kevin Carlberg

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

- Compute $m{ heta}^\star$ by approximately solving $\min_{m{ heta}} \min_{m{ heta}} \|\mathbf{X} \tilde{\mathbf{X}}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}_{\mathsf{dec}}^{\star})$
- + Same snapshot data, no specialized problem knowledge

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{query} \setminus \mathcal{D}_{training}$

Subspace ROM Given •

Galerkin
$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\updownarrow$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)$$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}})\|_2$$

Manifold ROM

Given $\mathbf{g}(\hat{\mathbf{x}})$

$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^{p}}{\operatorname{argmin}} \|\mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}, \mathbf{g}(\hat{\mathbf{x}}); t)\|_{2}$$

$$\updownarrow$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}})^{+} \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t)$$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \| \mathbf{r}^n (\mathbf{g}(\hat{\mathbf{v}})) \|_2$$

- + Satisfy residual minimization
- + Predictions directly integrate deep learning with computational physics

Numerical results

1D Burgers' equation

$$\frac{\partial w(x,t;\boldsymbol{\mu})}{\partial t} + \frac{\partial f(w(x,t;\boldsymbol{\mu}))}{\partial x} = 0.02e^{\alpha x} \quad \frac{\partial \mathbf{w}(\vec{x},t;\boldsymbol{\mu})}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x},t;\boldsymbol{\mu}))$$

2D reacting flow

$$egin{aligned} rac{\partial \mathbf{w}(ec{x},\,t;oldsymbol{\mu})}{\partial t} &=
abla \cdot (\kappa
abla \mathbf{w}(ec{x},\,t;oldsymbol{\mu})) \ &- \mathbf{v} \cdot
abla \mathbf{w}(ec{x},\,t;oldsymbol{\mu}) + \mathbf{q}(\mathbf{w}(ec{x},\,t;oldsymbol{\mu});oldsymbol{\mu}) \end{aligned}$$

- μ : α , inlet boundary condition
- Spatial discretization: finite volume
- Time integrator: backward Euler

- μ : two terms in reaction
- * Spatial discretization: finite difference
- Time integrator: BDF2

Manifold interpretation: Burgers' equation

POD, p=3 projection

Autoencoder, p=3
projection

FOM

+ Projection error onto 3-dimensional manifold nearly perfect

Manifold LSPG outperforms optimal linear subspace

1D Burgers' equation

2D reacting flow

conserved variable

high-fidelity model

POD-LSPG p=5

Manifold LSPG p=5

+ Autoencoder manifold significantly better than optimal linear subspace

- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG

- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
- + Method breaks Kolmogorov-width barrier

- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
- + Method breaks Kolmogorov-width barrier
- + Manifold LSPG outperforms manifold Galerkin on 1D Burgers' equation

Outstanding challenges in model reduction

1) Linear-subspace assumption is strong

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t)$$

Lee and C. "Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders." J Comp Phys, 404:108973, 2020.

2) Important physical properties not satisfied

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2} \qquad \mathbf{\Phi} \hat{\mathbf{x}}^{n} = \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{v})\|_{2}$$

- C., Choi, and Sargsyan. "Conservative model reduction for finite-volume models." J Comp Phys, 371:280–314, 2018.
- Lee and C. "Deep conservation: A latent dynamics model for exact satisfaction of physical conservation laws." arXiv e-print 1909.09754, 2019.

3) Error analysis difficult

- Freno and C. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations." CMAME, 348:250–296, 2019.
- Parish and C. "Time-series machine-learning error models for approximate solutions to parameterized dynamical systems." arXiv e-print, (1907.11822).

Finite-volume method

$$ODE: \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

$$x_{\mathcal{I}(i,j)}(t) = \frac{1}{|\Omega_j|} \int_{\Omega_i} u_i(\vec{x}, t) d\vec{x}$$

average value of conserved variable i over control volume j

$$f_{\mathcal{I}(i,j)}(\mathbf{x},t) = -\frac{1}{|\Omega_j|} \int_{\Gamma_j} \underbrace{\mathbf{g}_i(\mathbf{x};\vec{x},t)}_{\text{flux}} \cdot \mathbf{n}_j(\vec{x}) \, d\vec{s}(\vec{x}) + \frac{1}{|\Omega_j|} \int_{\Omega_j} \underbrace{\mathbf{s}_i(\mathbf{x};\vec{x},t)}_{\text{source}} \, d\vec{x}$$

• flux and source of conserved variable i within control volume j

$$r_{\mathcal{I}(i,j)} = \frac{dx_{\mathcal{I}(i,j)}}{dt}(t) - f_{\mathcal{I}(i,j)}(\mathbf{x},t)$$

rate of conservation violation of variable i in control volume j

O
$$\Delta$$
E: $\mathbf{r}^n(\mathbf{x}^n) = 0, n = 1, ..., N$

$$r_{\mathcal{I}(i,j)}^n = x_{\mathcal{I}(i,j)}(t^{n+1}) - x_{\mathcal{I}(i,j)}(t^n) + \int_{t^n}^{t^{n+1}} f_{\mathcal{I}(i,j)}(\mathbf{x},t) dt$$

conservation violation of variable i in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods

Conservative manifold model reduction

Manifold Galerkin

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\text{minimize}} \| \mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}; \mathbf{g}(\hat{\mathbf{x}}); t) \|_2$$

Minimize conservation-violation rates

Manifold LSPG

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

 Minimize conservation violations over time step n

- Neither enforces conservation!

Conservative manifold Galerkin

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\text{minimize}} \| \mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}; \mathbf{g}(\hat{\mathbf{x}}); \mathbf{t}) \|_2$$

subject to
$$\mathbf{Cr}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}};\mathbf{g}(\hat{\mathbf{x}});t)=\mathbf{0}$$

 Minimize conservation-violation rates subject to zero conservation-violation rates over subdomains

Conservative manifold LSPG

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\mathsf{minimize}} \, \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

subject to
$$\mathbf{Cr}^n(\mathbf{g}(\hat{\mathbf{v}})) = \mathbf{0}$$

 Minimize conservation violations over time step n subject to zero conservation violations over time step n over subdomains

 Conservation enforced over prescribed subdomains

Discrete-time error bound (linear subspaces)

Lemma: local conserved-quantity error bounds [C., Choi, Sargsyan, 2018]

The error in the conserved quantities computed with either conservative Galerkin or conservative LSPG can be bounded as:

$$\begin{split} \|\bar{\mathbf{C}}(\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}^{n})\|_{2} &\leq \sum_{\ell=0}^{k} \frac{|\beta_{\ell}^{n}| \Delta t}{|\alpha_{0}^{n}|} \|\bar{\mathbf{C}}\mathbf{f}(\mathbf{x}^{n-\ell}) - \bar{\mathbf{C}}\mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}^{n-\ell})\|_{2} \\ &+ \sum_{\ell=1}^{k} \frac{|\alpha_{\ell}^{n}|}{|\alpha_{0}^{n}|} \|\bar{\mathbf{C}}(\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}^{n-\ell})\|_{2} \end{split}$$

- Error depends only on velocity error on decomposed mesh
- + No source, global conservation: error due to flux error along boundary!

High-fidelity model

Reduced-order models

POD subspace

Solution error: 13%

Conservation violation: 16%

Autoencoder manifold

Solution error: 0.5%

Conservation violation: 1%

POD subspace with conservation constraints

Solution error: 12%

Autoencoder manifold with conservation constraints

Solution error: 0.2%

Conservation violation: <0.001% Conservation violation: <0.001%

Conservative manifold Galerkin

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\text{minimize}} \| \mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}; \mathbf{g}(\hat{\mathbf{x}}); t) \|_2$$

subject to
$$\mathbf{Cr}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}};\mathbf{g}(\hat{\mathbf{x}});t)=\mathbf{0}$$

Conservative manifold LSPG

$$\underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\mathsf{minimize}} \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

subject to
$$\mathbf{Cr}^n(\mathbf{g}(\hat{\mathbf{v}})) = \mathbf{0}$$

Interpretation

- Integrates computational physics with deep learning
- Projection-based latent dynamics model that enforces conservation
- Nearly all existing methods are data-driven latent dynamics models

[Böhmer et al., 2015; Goroshin et al., 2015; Watter et al., 2015; Karl et al., 2017; Takeishi et al., 2017; Banijamali et al., 2018; Lesort et al., 2018; Lusch et al., 2018; Morton et al., 2018 Otto and Rowley, 2019]

Gradient computation

- Backpropagation used to compute decoder Jacobian $\nabla \mathbf{g}(\hat{\mathbf{x}})$
- Quasi-Newton solvers directly call TensorFlow

Ongoing work

- Hyper-reduction: "easy" because convolutional layers preserve sparsity
- Integration in large-scale code underway in Pressio

Shortcomings of state-of-the-art ROMs

1) Linear-subspace assumption is strong

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t)$$

Lee and C. "Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders." J Comp Phys, 404:108973, 2020.

2) Important physical properties not guaranteed

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2} \qquad \Phi \hat{\mathbf{x}}^{n} = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} \|\mathbf{r}^{n}(\mathbf{v})\|_{2}$$

- C., Choi, and Sargsyan. "Conservative model reduction for finite-volume models." J Comp Phys, 371:280–314, 2018.
- Lee and C. "Deep conservation: A latent dynamics model for exact satisfaction of physical conservation laws." arXiv e-print 1909.09754, 2019.

3) Error analysis difficult

- Freno and C. "Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations." CMAME, 348:250–296, 2019.
- Parish and C. "Time-series machine-learning error models for approximate solutions to parameterized dynamical systems." arXiv e-print, (1907.11822).

Discrete-time error bound

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,

$$\|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{G}^{n})\|_{2} \leq \frac{1}{h} \|\mathbf{r}_{G}^{n}(\mathbf{g}(\hat{\mathbf{x}}_{G}))\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\gamma_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{g}(\hat{\mathbf{x}}_{G})\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{LSPG}^{n})\|_{2} \leq \frac{1}{h} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{LSPG}^{n}(\mathbf{g}(\hat{\mathbf{v}}))\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\gamma_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{g}(\hat{\mathbf{x}}_{LSPG})\|_{2}$$

Can we use these error bounds for error estimation?

Discrete-time error bound

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,

$$\|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{G}^{n})\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1,...,N\}} \|\mathbf{r}_{LSPG}^{j}(\mathbf{g}(\hat{\mathbf{x}}_{G}^{j}))\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{g}(\hat{\mathbf{x}}_{LSPG}^{n})\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1,...,N\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{LSPG}^{j}(\mathbf{g}(\hat{\mathbf{v}}))\|_{2}$$

Can we use these error bounds for error estimation?

- grow exponentially in time
- deterministic: not amenable to uncertainty quantification

Main idea

Observation: ROMs generate quantities that are informative of the error

ML perspective: these are good features for predicting the error

Idea: Apply machine learning regression to generate a mapping from residual-based quantities to a random variable for the error

Machine-learning error models [Freno and C., 2019; Parish and C., 2019]

Machine-learning error models: formulation

What attributes does the ROM error have?

$$\|\mathbf{x}^n - \mathbf{g}(\hat{\mathbf{x}}_{\mathsf{LSPG}}^n)\|_2 \leq \frac{\gamma_1(\gamma_2)^n \exp(\gamma_3 t^n)}{\gamma_4 + \gamma_5 \Delta t} \max_{j \in \{1, \dots, T\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{\mathsf{LSPG}}^j(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

- 1. Dependence on non-local quantities in time
- 2. Dependence on the residual

Regression model

$$\hat{\delta}^n(\boldsymbol{\mu}) = \hat{\delta}^n_f(\boldsymbol{\mu}) + \hat{\delta}^n_{\epsilon}(\boldsymbol{\mu})$$
 deterministic stochastic

• regression function: $\hat{\delta}^n_f(\mu) = \hat{f}(\rho^n(\mu), h^{n-1}(\mu), \hat{\delta}^{n-1}_f(\mu))$

$$\mathbf{h}^{n}(\boldsymbol{\mu}) = \mathbf{g}(\boldsymbol{\rho}^{n}(\boldsymbol{\mu}), \mathbf{h}^{n-1}(\boldsymbol{\mu}), \hat{\delta}_{f}^{n-1}(\boldsymbol{\mu}))$$

- + latent variables $h^n(\mu)$: enable capturing non-local dependencies
- + features $\rho^n(\mu)$: residual-based (and cheaply computable)
- + general formulation encompasses ARX, LARX, RNN, LSTM, GRU

Example: long short-term memory (LSTM)

$$\hat{\delta}_f^n(\mu) = \hat{f}(\rho^n(\mu), h^{n-1}(\mu))$$

$$h^n(\mu) = g(\rho^n(\mu), h^{n-1}(\mu))$$

Training and machine learning: error modeling

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

37

- randomly divide data into (1) training data and (2) testing data
- construct regression function $\hat{\delta}_f^n$ via cross validation on **training data**
- construct noise model $\hat{\delta}^n_\epsilon$ from sample variance on **test data**

Reduction

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

$$\begin{array}{l} \textit{regression model} \\ \hat{\delta}^n(\pmb{\mu}) = \hat{\delta}^n_f(\pmb{\mu}) + \hat{\delta}^n_\epsilon(\pmb{\mu}) \end{array}$$

 $\rightarrow \begin{array}{l} \text{machine learning} \\ \text{error model } \hat{\delta}^n \text{ } n = 1, \dots, T \end{array}$

$$\mathbf{h}^{n}(\boldsymbol{\mu}) = \mathbf{g}(\boldsymbol{\rho}^{n}(\boldsymbol{\mu}), \mathbf{h}^{n-1}(\boldsymbol{\mu}), \hat{\delta}_{f}^{n-1}(\boldsymbol{\mu}))$$

Latent dynamics learning

$$\hat{\delta}_f^n(\boldsymbol{\mu}) = \hat{f}(\boldsymbol{\rho}^n(\boldsymbol{\mu}), \boldsymbol{h}^{n-1}(\boldsymbol{\mu}), \hat{\delta}_f^{n-1}(\boldsymbol{\mu}))$$

$$\tilde{\mathbf{q}}_{\mathsf{HFM}}^n(\boldsymbol{\mu}) = \underline{\mathbf{q}}_{\mathsf{ROM}}^n(\boldsymbol{\mu}) + \hat{\delta}^n(\boldsymbol{\mu})$$

stochastic deterministic stochastic

Application: Advection-diffusion equation

GP -

+ regression methods: classical RNN and LSTM most accurate

Application: Advection-diffusion equation

GP —

- + regression methods: classical RNN and LSTM most accurate
- + features: only 7 residual samples needed for good accuracy

Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.