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High-fidelity simulation

+Indispensable across science and engineering

- High fidelity: extreme-scale computational models

Turbulent reacting flows Antarctic ice sheet modeling Magnetohydrodynamics
courtesy J. Chen, Sandia courtesy R. Tuminaro, Sandia courtesy J. Shadid, Sandia

computational barrier

Time-critical problems

» model predictive control ® interactive virtual environment

® health monitoring ® design optimization
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High-fidelity simulation: captive carry




High-fidelity simulation: captive carry

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

Time-critical problems

o explore flight e uncertainty @ model predictive e robust design of
envelope guantification  control store and cavity
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Computational barrier at NASA

El]l’ Nl-‘\ll ﬂOl’k Cimes HIGH-PERE. » ' /
Geniuses Wanted: NASA Challenges FAST COMPUTI INJ E H ﬂ LLENGE

Coders to Speed Up Its Supercomputer

“Despite tremendous progress made in the past few decades,
CFD tools are too slow for simulation of complex geometry flows...
[taking] from thousands to millions of computational core-hours.”

“To enable high-fidelity CFD for multi-disciplinary analysis and design,
the speed of computation must be increased by orders of magnitude.”

“The desired outcome is any approach that can

accelerate calculations by a factor of 10x to 1000x.”
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Approach: exploit simulation data

d
ODE: d_: =f(x;t, ), x(0,u)=x0(pt), t€]|0, Thnal, peED

Time-critical problem: rapidly solve ODE for pr € Dquery

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for g € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Diraining
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Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Certification: accurately quantify the ROM error

4. Structure preservation: preserves important physical properties

5. Generalization: should work even in difficult cases
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Model reduction: existing approaches

Nonlinear dynamical systems: ineffective

* Proper orthogonal decomposition (POD)—Galerkin sirovich, 1987; colonius, 2004]
- Inaccurate, doesn’t generalize: often unstable

- Not certified: error bounds grow exponentially in time

- Expensive: projection insufficient for speedup

- Structure not preserved: physical properties ignored
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

’ aCCUI‘acy: LS PG prOjeCtiOn [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
’ IOW cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013]

> Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

¢ StrUCture preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds fLee, c, 2018]
» generalization: h-adaptivity (c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

» accuracy: LSPG projection (c, Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds tee, c, 2018
> generalization: h-adaptivity [c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborators: Matthew Barone (Sandia), Harbir Antil (GMU)
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Training simulations: state tensor

ax
. — =f(x:t,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

(IS unery \ Dtraining

number of

time steps T
+—>

A

number of
state variables N

<
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Training simulations: state tensor
dx

. — = f(x; t,
ODE ” (x; t, u)

1. Training: Solve ODE for g € Dypining and collect simulation data

(IS unery \ Dtraining
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Tensor decomposition

dx
. — =f(x:t,
ODE ” (x; t, )

1. Training: Solve ODE for gt € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

Xa) =

® columns are principal components of the spatial simulation data

How to integrate these data with the computational model?
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Previous state of the art: POD-Galerkin

d .
ODE: d—)t(:f(x;t,u) D .

3. Reduction: Reduce the cost of solving ODE for it € Dquery \ Diraining

1. Reduce the number of unknowns 2. Reduce the number of equations

>”<t)—<bx(t) f(PX;t, 1) — ¢@
Galerkin ODE: E =o' f(dx;t, 1) |D ,'. ¢ 30
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Captive carry

o
oooooooo
p

*» Unsteady Navier—Stokes »Re=6.3x10® *» Mo

=0.6
Spatial discretization Temporal discretization
» 2nd-order finite volume » 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 1073
» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances
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High-tidelity model solution

vorticity field

pressure field

Kevin Carlberg



Galerkin performance

2.8
- high-fidelity:
_ dim 1.2x105
a —— Galerkin: dim 204
g_ 2 4 _- ------- Galerkin: dim 368
© 18 - = Galerkin: dim 564
) Jq =
= :
A 20" .5’
s : ]
)
S
Q |
1.6 | | | | | |
0 2 4 6 8 10 12

time
- Galerkin projection fails regardless of basis dimension
Can we construct a better projection?
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Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dx T (@3-
dt_(b (PX; t)

f(x; t)
| |
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Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dX
Cb——d)(bT f(Px; t)

f(x; t)
| 1 1™

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

dX
() X(x t) = argmin ||r(v,x; t)|>
dt vErange(®)
r(v,x;t) :=v — f(x; t)
OAE Galerkin OAE

r"(x")=0, n=1,..., T

k k
r"(x) := apx — AtBof(x; t") + Z ajx" — Atz Bf(x"; t")
j=1 j=1

- Time-discrete Galerkin solution: not generally optimal in any sense
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Residual minimization and time discretization

( ) (" : )
ODE | Galerkin ODE
dx residual >l d%
— f(x; t) |minimization —(x t) = argml(r(:))Hr(v x; t)||2
L dt y K vErange J
time time
discretization discretization
) .
( 1spcore ) ... [ oaE " Galerkin OAE
©x7 = argmin )Hr”(V)Hz “minimization| *"(x") =0 O Tr"(®x") =0
k n:]_,___,T J kn:].,...,T) L n:].,...,T J

Least-squares Petrov—Galerkin (LSPG) projection (c. sou-Mosleh, Farhat, 2011]
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Error bound

If the following conditions hold:

1. f(+; t) is Lipschitz continuous with Lipschitz constant &

2. Atis small enough such that 0 < h:= |ag| — |Bo|kAL, then
k

n 2 1 n o 1 n— an—/t
x — @82 < | [F(OKE) [+, D [l @2

/=1 B

. I . 1 _ an—0
[x" — ®X[spgll2 < min Hrfspc("’V)HerE D ag]x"F = dk]5pc 12
-1

+ LSPG sequentially minimizes the error bound
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LSPG performance

2.8
—_ high-fidelity:
] i | dim 1.2x106
a | —— Galerkin: dim 204
g_ 2 4 _- ------- Galerkin: dim 368
© TN § - — Galerkin: dim 564
L uy
= ) — LSPG: dim 204
7]
N 2.01 “)
o | NI O\l O ®mE O®mFE Wy Vo LSPG: dim 368
Q -
- = LSPG: dim 564
16 | | | | | |
0 2 4 § 3 10 12

+ LSPG is far more accurate than Galerkin
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
> IOW cost: sam ple mESh [C., Farhat, Cortial, Amsallem, 2013*]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» generalization: projection onto nonlinear manifolds tee, c, 2018
> generalization: h-adaptivity [c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborators: Julien Cortial (Stanford), Charbel Farhat (Stanford)
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Wall-time problem

llllll

probe
2.87
- high-fidelity:
i ‘ dim 1.2x106
2 | — Galerkin: dim 204
g_ 24 e LR O RAE IR WM Galerkin: dim 368
© TN § - — Galerkin: dim 564
L wy
= ) — LSPG: dim 204
J
N 2.0 “)
o | NI A\l &I W Ww V- LSPG: dim 368
!
- - LSPG: dim 564
]_6 l I I I I I
0 2 4 6 8 10 12
time
» High-fidelity simulation: 1 hour, 48 cores Why does this occur?
» Fastest LSPG simulation: 1.3 hours, 48 cores Can we fix it?
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize|| r"( ¢ V)||>
V'

Kevin Carlberg



COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize A (V)

v
.‘I)2

Can we introduce a weighting matrix A to make this less expensive?
» Training: collect residual tensor R”* while solving ODE for gt € Diaining

» Machine learning: compute residual PCA ®, and sampling matrix P
» Reduction: compute regression approximation r" ~ " = ® (P®,)" Pr”

value

minimize
¢ 2+ Only a few
elements of r"

must be computed
2

Kevin Carlberg 22
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Sa m p‘e meSh [C., Farhat, Cortial, Amsallem, 2013]
minimize||(P®,)"Pr"(®V)||-

sample
mesh

+ HPC on a laptop
vorticity field

LSPG ROM with
A = (P(Dr)"l'P 20
32 min, 2 cores

vorticity fom

high-fidelity
5 hours, 48 cores g

+229x savings in core—hours
+< 1% error in time-averaged drag
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Ah med bOdy [Ahmed, Ramm, Faitin, 1984]

| 4‘%»%!‘*"“’*“%@%""“"‘3’?}%&?‘!«@?5&'%!
R Sy AU X
¥ g ‘0‘ Y XN DR
< ~ it

I Ll >— —IL < I [T 50 ‘W”W, 5
202 | 470 x Y f i o
' | 163.5 ;::gi g
| o
u! / iga‘
— Y]
e
| o

» Unsteady Navier—Stokes »*Re=4.3x 106 » M..=0.175

Spatial discretization Temporal discretization

» 2nd-order finite volume » 2nd-order BDF

* DES turbulence model » Time step At =8 x 10™s
» 1.7 x 10" degrees of freedom » 1.3 x 10° time instances
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
LSPG ROM with A = (P®,)™P high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

+438x savings in core—hours
+Largest nonlinear dynamical system on which ROM has ever had success

Nonlinear model reduction Kevin Carlberg 25



Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

» Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds tee, c, 2018
> generalization: h-adaptivity [c, 2015; etter and c., 2019]

» certification: machine learning error models
* [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborator: Youngsoo Choi
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

GNAT ROM (A = (P®,)"P) high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

spatial dim: 283 spatial dim: 1.7 x 107
temporal dim: 1.3 x 103 temporal dim: 1.3 x 103

+438X computational-cost reduction
+60,500X spatial-dimension reduction
- Zero temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?

Nonlinear model reduction Kevin Carlberg



Reducing temporal complexity:

Space-time ROMs

» Reduced basis (urban, patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
» POD—Galerkin volkwein, Weiland, 2006; Baumann, Benner, Heiland, 2016]

» ODE-residual minimization (constantine, wang, 2012]

+ Reduction of time dimension

+ Linear time-growth of error bounds’

- Requires space—time finite element discretization”

- No hyper-reduction

- Only one space—time basis vector per training simulation

" Only reduced-basis methods

Nonlinear model reduction Kevin Carlberg



Goals

Preserve attractive properties of existing space—time ROMs
+ Reduce both space and time dimensions
+ Slow time-growth of error bound

Overcome shortcomings of existing space—-time ROMs

+ Applicability to general nonlinear dynamical systems
+ Hyper-reduction

+ Extract multiple space—time basis vectors from each training simulation

Space—time least-squares Petrov—Galerkin (ST-LSPG) projection (choiand c., 2019]

Nonlinear model reduction Kevin Carlberg 29




Spatial v. spatiotemporal subspaces

High-fidelity-model trial subspace
xt o x"eRYeRT

Spat:al trlal subspace
%' eS@RT CRV®R’

- + Spatial dimension reduced
- Temporal dimension large

Space—t:me trial subspace

Ngt

Nl ZTCX,(,U)GS?TCRN@]RT

+ Spatial dimension reduced
+ Temporal dimension reduced

Nonlinear model reduction
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Space—-time LSPG projection

LSP
mini\?mize A r"(p U, X" KR ) . n=1..,T
o | |
ST-LSPG
ot (O () 0, 30, m(e0) 0 )
r(Vp) =
e (i () D (T ) 0 2 (T T ) )

minimize >

Vv

A r(U; p)
. . | 2

+ applicable to general nonlinear dynamical systems
- prohibitive cost: minimizing residual over all space and time

Nonlinear model reduction Kevin Carlberg 3]




ST-LSPG hyper-reduction

minimize A r(V; )
| . . |
. . | 2

Fr i = &, (P®,)" P

minimize|| (P®,)TP  F(U; )2

N —

A :
| 2

+ Residual computed at a few space—time degrees of freedom
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Sample mesh
LSPG

tl tZ t3 t4 t5 t6 t7 t8 t9 th
+ Residual computed at a few spatial degrees of freedom
- Residual computed at all time instances

ST-LSPG

» P: Kronecker product of space sampling and time sampling

‘ t, 5, 19

t1 t> td

-

-

-

+ Residual computed at a few space—time degrees of freedom
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Error bound

LSPG
- Sequential solves: sequential accumulation of time-local errors
n e 71(72)" exp(v3t”) . A
x" — dx > < max minl||r dv)||,
I = ®%spcll < T max minilepg(©9)]
N—— —.—_,

worst best time-local approximation residual

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

ST-LSPG

+ Single solve: no sequential error accumulation

x" — OX <VT(1+A) mi "W
| st-ispell2 < VT(LHA) min max X" — w7,

N——m—

best space-time approximation error

+ Stability constant: polynomial growth in time with degree 3/2
+ bounded by best space—time approximation error

How to construct space—time trial basis {71' 0 ?it 1 from training data?

Nonlinear model reduction Kevin Carlberg



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Compute truncated high-order SVD (T-HOSVD)
3. Reduction: Solve space—time LSPG for tt € Dquery \ Dtraining

i - me-

= columns are principal components of the temporal simulation data
Ty(ij) —

+ N+T storage per basis vector
» Experiments: for fixed error, ST-LSPG almost 100X faster than LSPG

Nonlinear model reduction Kevin Carlberg



Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

» structure preservat'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds tee, c, 2018
> generalization: h-adaptivity [c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborators: Youngsoo Choi (Sandia), Syuzanna Sargsyan (UW)
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Finite-volume method

[ ODE: ax _ f(x;t)

dt
XI(,J) ’QJ‘/ U,(X t)dX

» average value of conserved variable j over control volume j

(% ) = ~ 15 / 8. (x: %, t) -n; (%) d5(%) - ‘éj /Qs,-(x;z, ) d%

A/—/ | N——
flux source
» flux and source of conserved variable i within control volume j
dXI(,
ree,j) = (t) — fri jy(x, t)

» rate of conservation violation of variable j in control volume
(OAE: r"(x)=0, n=1,..,N]

tn+1

(i) = xz(i jy(t") = xzi (7)) + friij)(x, t)dt

tn
» conservation violation of variable j in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods
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COnservat|Ve mOde‘ redUCthﬂ [C., Choi, Sargsyan, 2018]

Galerkin LSPG
dX ~ N . n
(x t) = argmin |[r(v,x; t)|]> ®x" = argmin ||r"(v)]]
vErange(®) vErange(®)
* Minimize sum g)f sq.uared » Minimize sum of squared
conservation-violation rates conservation violations over time step n
- Neither enforces conservation!
Conservative Galerkin Conservative LSPG
minimize |[r(v, X; t)|[» minimize ||r
minimize lr(v, x; t)]] minimize r"(v)]l2
» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations over time step n

subject to zero conservation violations over
time step n over subdomains

a5 AL

+ Conservation enforced over prescribed subdomains
» Experiments: enforcing global conservation can reduce error by 10X

Kevin Carlberg 38

subject to zero conservation-violation rates
over subdomains
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' accuracy: LS PG prOjeCﬁon [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds fLee, c, 2018]
> generalization: h-adaptivity [c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborator: Kookjin Lee
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Model reduction can work well...
vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

pressure_rom

i
e Y _ —

0
17
14
fom

26
23

20
[ i
14

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is stronqg <=
2) Accuracy limited by information in ®

Nonlinear model reduction Kevin Carlberg 40

vorticity fom

high-fidelity
5 hours, 48 cores




Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp 1 set of all p-dimensional linear subspaces

» dp(M) = Slgg Po(M,S), Psc(M,S) : = sup inf inf ||x —y|

Nonlinear model reduction Kevin Carlberg 41



Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp : set of all p-dimensional linear subspaces

 dp(M) = inf Py(M,S) , Po(M,8) = [> inf lx—y|2/ | > [Ix]?

relative error

Nonlinear model reduction

xéE/V4

Example

102 |

10—6g

*
’0

*
*
*
*
*
*
*
*
*
*
*
.
-
.
.
.
v
&

3 10 15 20 25

reduced dimension p

xeM

- Py(M, range(®))

Kevin Carlberg



Kolmogorov-width limitation of linear subspaces

» M == {x(t,p) | t € [0, Thnal], p € D}: solution manifold
» Sp : set of all p-dimensional linear subspaces

’ Zfp(/\/l) = Slgg Py(M,S) |, P2(M,S) Z mf |x — yl|?/ Z 1x]|2
’ xeM” xEM
. Example )
T I dy(M)
;':.*.;.‘\“ & !
S el —— Py(M, range(®))
= ‘RQM error|
o Vet X = Xispall?
B Vem I
© ]
8 . 0000000000000
10—6é .........

3 10 15 20 25

reduced dimension p
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Kolmogorov-width limitation of linear subspaces

» M= {x(t, ) |t €10, Ttnal], p € D}: solution manifold
» O @ set of all p-dimensional linear subspaces

’ ap(~/\/l) L= Slélg Py(M,S) |, P2(M,S) Z 1nf Ix —y|?/ Z | x]|?
’ xem’ x€M
. Example i
\ i i ; I d,(M)
N, I} g
.’F"% 1
§ 1072} Jl‘\\\ —— Pq (M, range(cb))
— - "~I,j\
v | D — 5
L Kolmogorov-W/dth Vel LSZPG”
5 ! _ V2 xem IX]
e | limitation-._ z
v | e |
el 10_6;_ : ............ i dlm(M)
3 5 10 15 20 25

reduced dimension p
- Kolmogorov-width limitation: significant error for p = dim(M)
Goal: overcome limitation via projection onto a nonlinear manifold

Nonlinear model reduction Kevin Carlberg



Nonlinear trial manifold

Linear trial subspace Nonlinear trial manifold
range(®) := {®dx|x € RP} S :={g(x)|x € RP}

example x
N=3

p=2

O W O O O A W =
O L W L O B W
WV O L WL O W P S |

state  x(t) = x(t) = ®x(t) € range(P)  x(t) ~ x(t) = g(
I

NN

, dx  dx dx dx  dx . dx
velocity —- =~ =®_-¢ range(®) N = Vg(X)— € TS
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Manitold Galerkin and LSPG projection
Linear-subspace ROM  Nonlinear-manifold ROM

. dx . s X
Galerkin == = argmin||r(d7, ®X; t)]| ax _ argmin||r(Vg(x)v, g(X); t)||2
dt JERP dt JERn
0 0
dx o . .\ dx - .
®— = argmin |V —f(®x;t)|l2  Vg(x)— = argmin||v — f(g(x); t)]|2
dt vErange(®) dt ve TS
) )
dx dx
—:(DTf(bAt A — A‘I‘f ".t
X oThox:t) X Ve F ()
LSPG x" = argmin||r"(dv)]| x" = argmin||r"(g(V))||2
veRP vERP

+ Satisfy residual-minimization properties

Nonlinear model reduction Kevin Carlberg



Manitold Galerkin and LSPG projection
Linear-subspace ROM  Nonlinear-manifold ROM

. dx . o X
Galerkin == = argmin||r(®v, ®x; t)]| ax _ argmin||r(Vg(x)v, g(X); t)||2
dt JERP dt JERn
0 0
dx e . ., dx A .
®— = argmin |V —f(®x;t)|l2  Vg(x)— = argmin||v — f(g(x); t)]|2
dt vErange(®) dt ve TS
0 0
dx dx
—:(DTf(bAt A — A‘I‘f ".t
X oThox:t) X Ve F ()
LSPG x" = argmin||r"(dV)]| x" = argmin||r®(g(v))]]2
veRP vERP

+ Satisfy residual-minimization properties

How to construct manifold S := {g(x) | x € RP} from training data?

Nonlinear model reduction Kevin Carlberg



Deep autoencoders

Input layer Code Output layer
X1
X2
"\ %
X4 ."\\ //". %4
- ““‘o""““ %
- ’0/, \\0’

0-' \0

Encoder henc(-;0c.nc) Decoder hyec(-; O4ec)
X = hdec('§ Hdec) O henc (X§ Henc)

+ If X & x for parameters 0, g = hgec(+; 0..) produces an accurate manifold

Kevin Carlberg



Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for p¢ € Dquery \ Dtraining

» Compute 8* by approximate

» Define nonlinear trial manifo

Nonlinear model reduction

I I : X(l)(g)

y solving miniemize X1y — X1y (0) |

d by setting g = hgec('; ngc)
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Algorithm

1. Training: Solve ODE for pt € Diraining and collect simulation data
2. Machine learning: Train deep convolutional autoencoder

3. Reduction: Solve manifold Galerkin or LSPG for £t € Dquery \ Dtraining

» Compute 8* by approximate

» Define nonlinear trial manifo

Nonlinear model reduction

I I : X(l)(g)

y solving miniemize X1y — X1y (0) |

d by setting g = hgec('; ngc)
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Numerical results

1D Burgers” equation 2D Chemically reacting flow
. . ow(X, t; .
Owlx, tip) | WO tim) g ooox PMEER) _ g (epw(s, ;)
ot Ox t B _
—v-Vw(X, t; p) + q(w(X, t; p); 1)
» W @, inlet boundary condition > JL:two terms in reaction

» Spatial discretization: finite volume » Spatial discretization: finite difference

* Time integrator: backward Euler * Time integrator: BDF2

Autoencoder architecture

g /éll Ilﬁ/

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers
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Manifold LSPG outperforms optimal linear subspace

1D Burgers’ equation

high-fidelity

model

POD-LSPG
p=>5

Manifold LSPG
p=5

conserved variable

6 -
- ‘\u"——’—ff/
0 20 40 60 80 100

X
4-~"-—’///’—\\\\\\\\\__f’///ff
2

0 20 40 60 80 100
X

4

4 A \/
2

0 20 40 60 80 100
X

Nonlinear model reduction

2D reacting flow

H> fraction

tem peratu re

0.9
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0.0

0.9
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0.0

0.9
1500
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500

0.0
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Method overcomes Kolmogorov-width limitation

1D Burgers’ equation

100| . 100 X)Lxx ........ dp(M)
| | 1 i 3
: | "‘.’\‘:l X ]
s N b, -= Po(M, range(®))
1071 L % IRy YN
~ERY S | i e ~ x subspace LSPG
iy | "‘i\.‘é ¥ "':\‘\\ | .
S *| T 2] |ak S : dlm(./\/l)
5 10 : T | 102] T T T 1 P~
(O : e : :
T) : ~.~¥-\.ﬂ'( L %* P2 (M’ 8)
— - T T T I
| | R
o | LT
1077 ;'*; (IR e S e Bt et
S s S T | :
35 10 20 30 40 50 3 5 10 15 20 25
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace
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Method overcomes Kolmogorov-width limitation

1D Burgers’ equation

10V ;
F

2D reacting flow

100

<> Py(M, range(®))
x subspace LSPG
\\ | DO dim(M)

101

] 10_2
— >

1073

'\__:
~

* Py(M,S)
.............. manifold LSPG

relative error

5! 10 15 20 25

duced dimension p

35 10 20 30 40 o0

reduced dimension p r

(D o~

+ Autoencoder manifold significantly better than optimal linear subspace

+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG

Nonlinear model reduction Kevin Carlberg



Method overcomes Kolmogorov-width limitation

1D Burgers’ equation 2D reacting flow

1()05', 100Ex>|<x>l< i aEEa Benn R dp(M)
o | i
| Y "
s I £ ~— Py(M, range(®))
—1 ¥ —1 | ”3‘\
— 1077 X E 107 ¢ ROR E
5N | N ~ x subspace LSPG
| "«.\.‘ x al$| "’..:\'\,\ 3 I .
SO T~ i Nl L1 dim(M)
-EU 1072 : Ty 1102 T I . AN
= | , _5
O | e | L x Py(M,S)
S 1 3
| | §
10| TSI manifold LSPG
SR SR E L
I [ | L. | |
35 10 20 ] 30 1%0 50 3 5 10 ] 15 ?O 25
reduced dimension p reduced dimension p

+ Autoencoder manifold significantly better than optimal linear subspace

+ Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
+ Improves generalization performance

Nonlinear model reduction Kevin Carlberg



Outlook

Manifold Galerkin Manifold LSPG
d% _ o N on _ . n N
pr azgérg:n“r(Vg(x)v,g(x), t)]|2 X aggegyn\!r (&(v))ll2
Interpretation

» First work demonstrating physics-constrained time evolution of codes

Gradient computation
» Backpropagation used to compute decoder Jacobian Vg(x)
» Quasi-Newton solvers directly call TensorFlow

Forward-compatible extensions
» Sample mesh: convolutional layers preserve sparsity
» Structure preservation: equality constraints enforcing conservation

Future work
» Detailed study of architecture, amount of requisite training
» Integration in large-scale code
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' GCCUI’acy: LS PG prOJECtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StI’UCtUI’e pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» generalization: projection onto nonlinear manifolds tee, c, 2018
» generalization: h-adaptivity (c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Nonlinear model reduction Kevin Carlberg 5]



Model reduction can work well...
vorticity field pressure field

LSPG ROM with
A= (Pb,)"P
32 min, 2 cores

pressure_rom

i
e Y _ —

0
17
14
fom

26
23

20
[ i
14

+229x savings in core—hours
+< 1% error in time-averaged drag
... however, this is not guaranteed
x(t) = & x(t)

1) Linear-subspace assumption is strong
2) Accuracy limited by information in ¢ G

Nonlinear model reduction Kevin Carlberg 52

vorticity fom

high-fidelity
5 hours, 48 cores




lllustration: inviscid 1D Burgers' equation

Nonlinear model reduction

conserved variable

conserved variable

031

0.2

011

-0.1 1

-0.2

-0.3

spatial variable

high-fidelity model
| time=7.7 | |
|||
I
1\ f// “
=

-

50 100 150 200

spatial variable

250
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lllustration: inviscid 1D Burgers' equation

high-fidelity model

3] | time =13.9 | |

S

S .

S -

(@) '|

> 'l

Ra |

QJ I

> |

|

Q ; .

(2 | S e

S -

O =

U i 3 L '

spatial variable
reduced-order model

Q time =14 | |
Q r )
. 9 I A \’ ‘J‘_J

5 " |
.; | reduced-order model
§ ' inaccurate when o®
2 | insufficient
o =

QQ ——

spatial variable
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I\/Iain idea [C., 2015]

Model-reduction analogue to mesh-adaptive h-refinement

» ‘Split” basis vectors

AN/ AN

finite-element
h-refinement

» Generate hierarchical subspaces

(B { ==

range C range

\ & J \
» Converges to the high-fidelity model

reduced-order-model
h-refinement
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Refinement tree encodes splitting

{1,....6}]
/
| {1,3,4}] {2,5,6} |

e N N\
[{5.6}]

4 N\




Refinement tree encodes splitting

{1,...,6}
| {1,3,4}] {2,5,6} |

e N N\
[{5.6}]

4 N\




Refinement tree encodes splitting




Refinement tree encodes splitting




Refinement tree encodes splitting




Tree requirements

h-adaptivity generates a hierarchy of subspaces if:
1. children have disjoint support, and

2. the union of the children elements is equal to
the parent elements

h-adaptivity converges to the high-fidelity model if:

1. every element has a nonzero entry in >1 basis vector,
2. the root node includes all elements, and

3. each element has a leaf node.

—>

Tree-construction algorithm

* |dentifies hierarchy of correlated states via k-means clustering
+ Ensures theorem conditions are satisfied

Which vectors to split?

» Dual-weighted-residual error estimation

Nonlinear model reduction Kevin Carlberg 57




lllustration: inviscid 1D Burgers' equation

reduced-order mo
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spatial variable

conserved variable
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o w e
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+ generalizes,
even with poor
training data
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h-adaptivity provides an accurate, low-dim subspace

.IOO£ : : : :

: Y Y o L ] e o
AL Ve ) | - reduced-order models
O ? . ~« h-adaptive ROMs
E 10'25 o *
W | o |
_é 1073 ¢
S f y
L 107 ¢ °

r {

10° 102

subspace dimension

Reduced-order models
-minimum error 7.5%
- cannot overcome insufficient training data
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h-adaptivity provides an accurate, low-dim subspace

1OO£ : : : :
: Y Y L o e O

o . |« reduced-order models
_ . ® ® 00 o000, .
O | . .+ h-adaptive ROMs
E 10'25 o *
W | oo
> 5
S 10 7 ¢
S | °
L 107% ° @

10° 102

subspace dimension

Reduced-order models
-minimum error 7.5%
- cannot overcome insufficient training data

h-adaptive ROMs
+minimum error <0.01% with lower subspace dimension
+generalizes if insufficient training data
+can satisfy any prescribed error tolerance
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

' accuracy: LS PG prOjeCtion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
* Jow cost: sample mesh (c, rarhat, cortial, Amsallem, 2013]

* Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

’ StrUCture pl’eservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» generalization: projection onto nonlinear manifolds tee, c, 2018
> generalization: h-adaptivity (c, 201s]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Nonlinear model reduction Kevin Carlberg 60



Discrete-time error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «
2. The time step At is small enough such that 0 < h := |ag| — |Go|cAL,

k
; A L, ., . 1 o o
[x" — ®xgl2 < (DKot ) fo " — @xg 1

=1 "

. I . 1 ~ ~n—0
Ix” — O75pll2 < - min [spg(@0) 2+~ a7 — O/
-1

Can we use these error bounds for error estimation?
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Discrete-time error bound

If the following conditions hold:
1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|cAt,

n o Y1(72)" exp(~y3t”)  anf
X" — ®xg |2 < ~max_|rg(®%e)|l2
’)/4—|—’}/5At Jje{1,....N}
11(72)" exp(73t”)

max  min ||r’ dv)|,
oy e L | rispc(PY)]

X" — PX['spg|l2 <

Can we use these error bounds for error estimation?

- grow exponentially in time
- deterministic: not amenable to uncertainty quantification

Kevin Carlberg
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Main idea

* Observation: residual-based quantities are informative of the error

rTTT] T T T TTT] T T T T T7
e Iy
— —4 | ]
El z
%S - |
T | i i
s * :
8: - ]
<
55 05| o (rilldull) |
a - m (AL 1611 |
[ 111 R | L 1 1 11Tl
107° 10~

Residual 7 /error bound

* ML perspective: these are good features for predicting the error

Idea: Apply machine learning regression to generate a mapping from
residual-based quantities to a random variable for the error

Machine-learning error models (rreno and c., 2019]
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Training and machine learning: error modeling

2. Machine learning: Construct regression model
[ unery \ Dtraining

®
®
pressure_rom D

32‘;U n n
duFM — 9rROM P

AN | R

pressure_fom

26
23
20
17
. I -

» randomly divide data into (1) training data and (2) testing data
» construct regression-function model f via cross validation on training data
» construct noise model € from sample variance on test data

n
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Reduction
JUAS Dtraining

3. Reduction: predict reduced-order-model error for p € Dquery \ Drraining

inputs p — [reduced-order mode/] — outputs qrom. | D .'. ¢ . '..'.
n=1,..., T S o"® o
|
features p”', n=1,..., T
|
( )

regression model . machine learning

") = f(p"(w)) + é(p"(p)) errormodel " n=1,..., T

~

\_ Y,
r~n n <n B
qtem () = qrom(p) + 07 (p)
N—— N——— N——
Lstochastic deterministic stochasticJ

+ Statistical model of high-fidelity-model output

Use rigorous error analysis to engineer features p"

Nonlinear model reduction Kevin Carlberg



Application: Predictive capability assessment project

Deformation
Magnitude [m]
0.011

0.010

0.009

0.008
0.007

0.006

0.005
0.004

0.003

0.002

e 25
SIS g,
sy e,
e o
Setaattees N AL FALF AT

< 55252042 7
<] S 0.001

0.000

v

high-fidelity model dimension: 2.8 x 10°

reduced-order model dimensions: 1,... 5

inputs p: elastic modulus, Poisson ratio, applied pressure
quantities of interest: y-displacement at A, radial displacement at B
training data: 150 training examples, 150 testing examples

v

v

v

v
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Application: Predictive capability assessment project
y-displacement at A

regression methods

OLS: Linear

OLS: Quadratic

SVR: Linear .

(SVR: RBF

RF

Oglo(l — Rz)

)
>
Z
Z

N — —~ ~~ —~ ~—~ —~
= a ) -} o -} o
Rl e — — S S S

- S S I |
— — ~ ~ o
[ o (s_?o . - ~—
A~ DA = =
g 2 S
2= = 5 &2 70
= 3

k-NN

[1; £g] (¢=1000)

[; T

radial displacement at B

2
log1o(1 — R%)
—2
)
-3
I4
)—5
2 & 2 2 3 8 8 5 w 1
- LT = = o o 9 9 @ .-
= = 9 9 = = S S 3
y = = L L7
=
.~ < Q0
iig."ﬁiﬂ-'ﬁ
— =2 = 5§ =
features

+regression methods: neural networks and SVR: RBF most accurate
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Application: Predictive capability assessment project

regression methods

y-displacement at A radial displacement at B
2 2
0g1o(1 — R7) log1o(1 — R7)
OLS: Linear
OLS: Quadratic
SVR: Linear 9
SVR: RBF
-3
RF
k-NN —4
ANN
—5
= = o ol ol o w < = = = o ololg T w =<
=B o — — (@) (@) (@) (@) e E=N o — — (e (@] (-} (@] e
= = I 119 91 = = = = 979 1 =171 = 3
s = =L Ly 7 sy = = L1417 7
= o S|z =e = 22 o= Z|=le =
T i D P S I
SO R < £ Slg|E g
features features

+regression methods: neural networks and SVR: RBF most accurate
+features: only 100 residual samples needed for good accuracy
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Our research

Accurate, low-cost, structure-preserving,
generalizable, certified nonlinear model reduction

’ aCCUI‘acy: LS PG prOjeCtiOn [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
’ IOW cost: Sample meSh [C., Farhat, Cortial, Amsallem, 2013]

> Jow cost: space—time LSPG projection
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]

¢ StrUCture preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
» generalization: projection onto nonlinear manifolds fLee, c, 2018]
» generalization: h-adaptivity (c, 2015; etter and c., 2019]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]
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Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0O003525
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