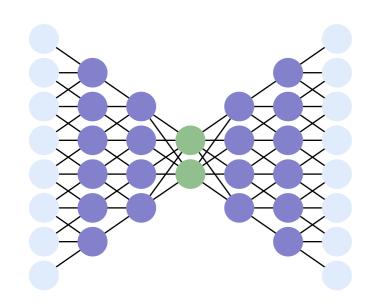
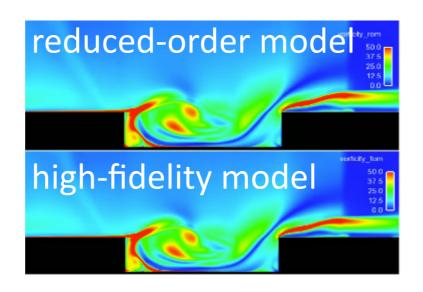
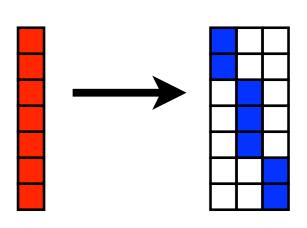
Nonlinear model reduction

Using machine learning to enable rapid simulation of extreme-scale physics models







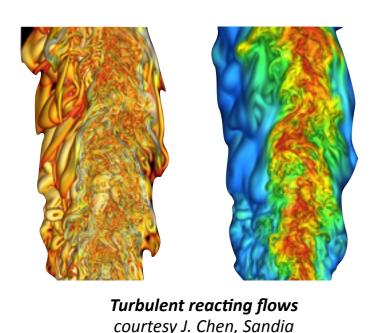
Kevin Carlberg

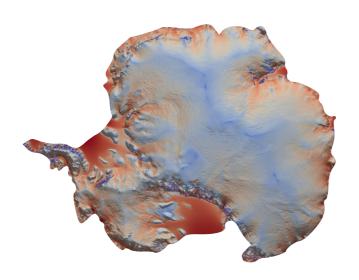
Sandia National Laboratories

Al for Engineering Summer School Toronto, Canada August 21, 2019

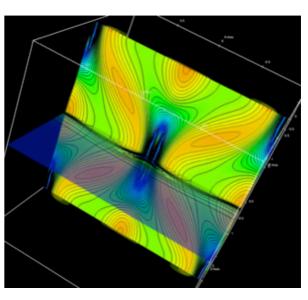
High-fidelity simulation

- + Indispensable across science and engineering
- High fidelity: extreme-scale computational models





Antarctic ice sheet modeling courtesy R. Tuminaro, Sandia



Magnetohydrodynamics courtesy J. Shadid, Sandia

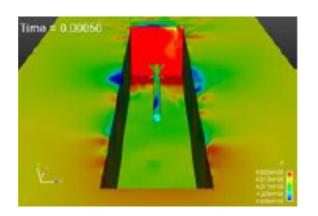
computational barrier

Time-critical problems

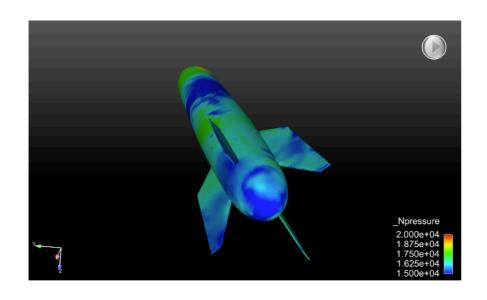
- model predictive control
- health monitoring

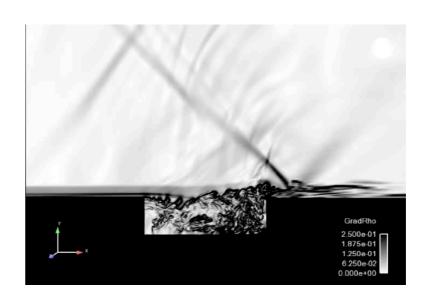
- interactive virtual environment
- design optimization

High-fidelity simulation: captive carry



High-fidelity simulation: captive carry





- + Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Time-critical problems

- explore flight envelope
- uncertainty quantification
- model predictive control
- robust design of store and cavity

Computational barrier at NASA

The New York Times

Geniuses Wanted: NASA Challenges

Coders to Speed Up Its Supercomputer

"Despite tremendous progress made in the past few decades, CFD tools are too slow for simulation of complex geometry flows... [taking] from thousands to millions of computational core-hours."

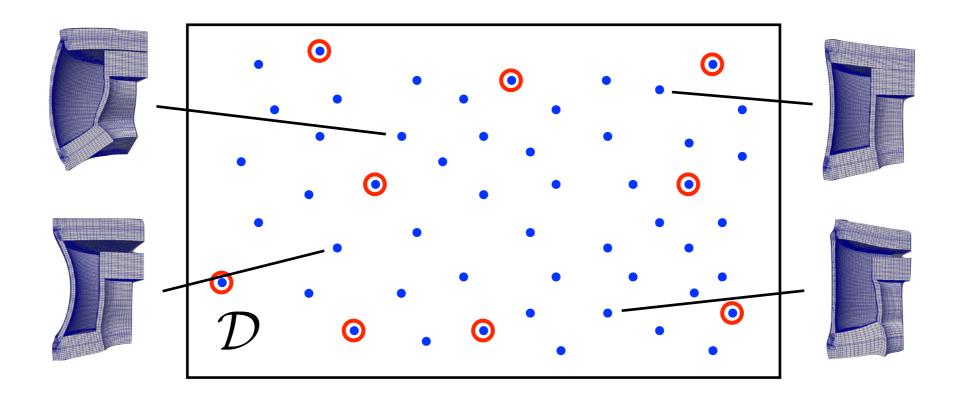
"To enable high-fidelity CFD for multi-disciplinary analysis and design, the speed of computation must be increased by orders of magnitude."

"The desired outcome is any approach that can accelerate calculations by a factor of 10x to 1000x."

Approach: exploit simulation data

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu}), \quad \mathbf{x}(0, \boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}), \quad t \in [0, T_{\mathsf{final}}], \quad \boldsymbol{\mu} \in \mathcal{D}$$

Time-critical problem: rapidly solve ODE for $\mu \in \mathcal{D}_{\mathsf{query}}$



Idea: exploit simulation data collected at a few points

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Model reduction criteria

- 1. *Accuracy:* achieves less than 1% error
- 2. Low cost: achieves at least 100x computational savings
- 3. Certification: accurately quantify the ROM error
- 4. Structure preservation: preserves important physical properties
- 5. **Generalization:** should work even in difficult cases

Model reduction: existing approaches

Linear time-invariant systems: mature [Antoulas, 2005]

- Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
- Transfer-function interpolation [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]
- + Accurate, generalizes, certified: sharp a priori error bounds
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: guaranteed stability

Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

- Reduced-basis method
- + Accurate, generalizes, certified: sharp a priori error bounds
- + *Inexpensive*: pre-assemble operators
- + Structure preservation: preserve operator properties

Nonlinear dynamical systems: ineffective

- Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987; Colonius, 2004]
- Inaccurate, doesn't generalize: often unstable
- Not certified: error bounds grow exponentially in time
- *Expensive*: projection insufficient for speedup
- Structure not preserved: physical properties ignored

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- Ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

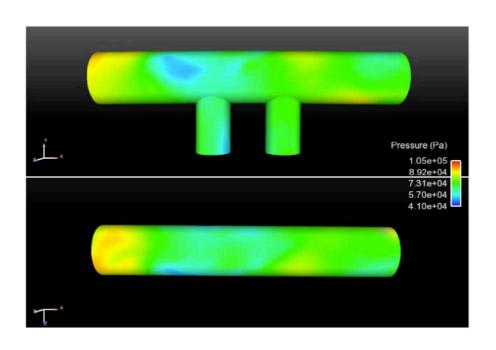
- accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

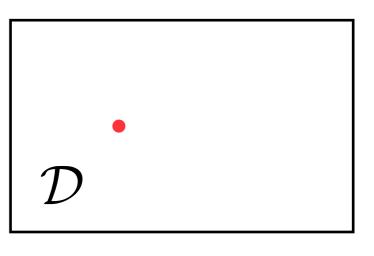
Collaborators: Matthew Barone (Sandia), Harbir Antil (GMU)

Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

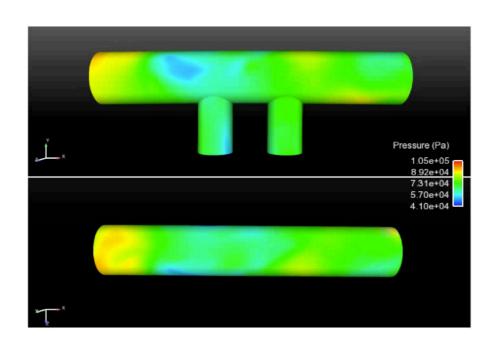


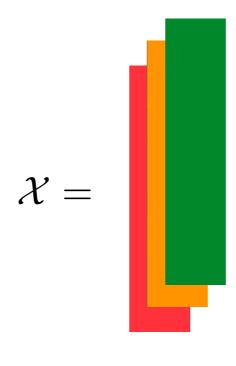


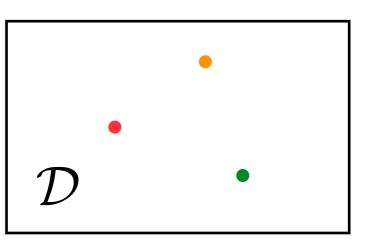
Training simulations: state tensor

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$





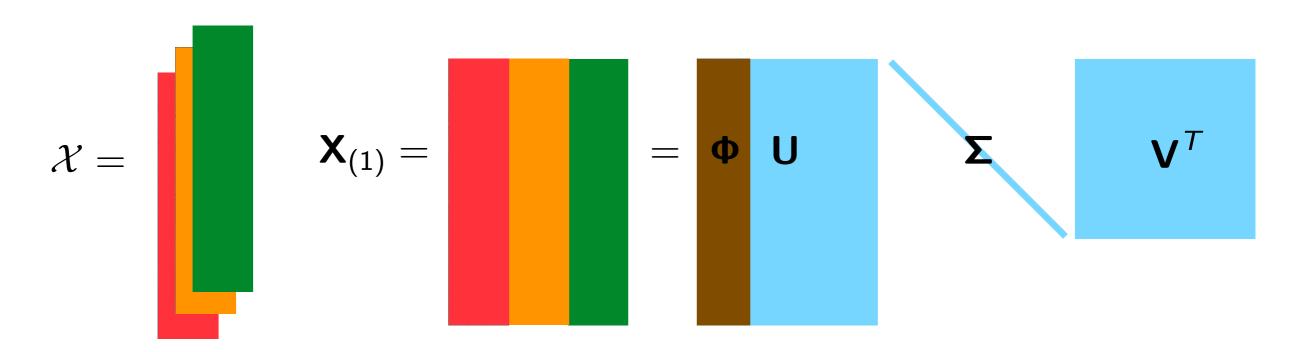


Tensor decomposition

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. Reduction: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$

Compute dominant left singular vectors of mode-1 unfolding



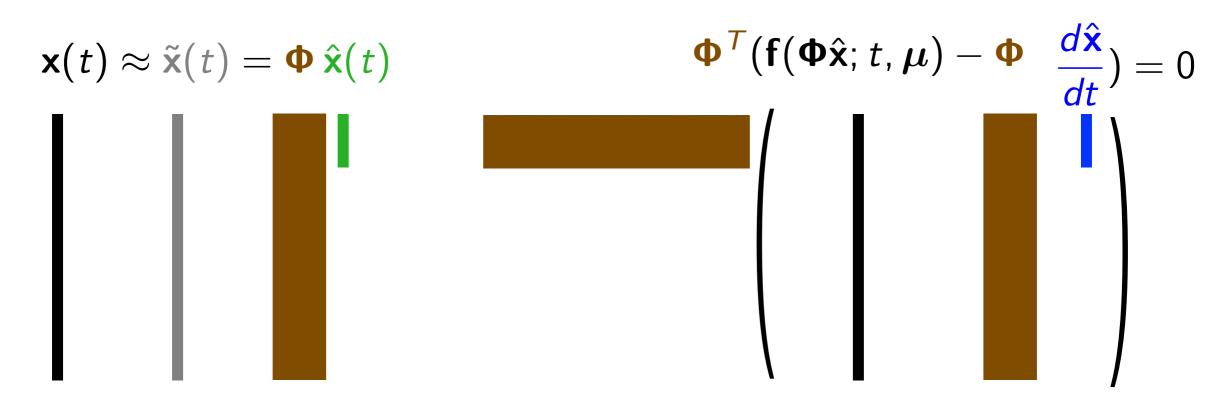
Φ columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

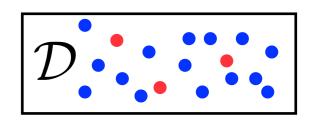
Previous state of the art: POD-Galerkin

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \boldsymbol{\mu})$$

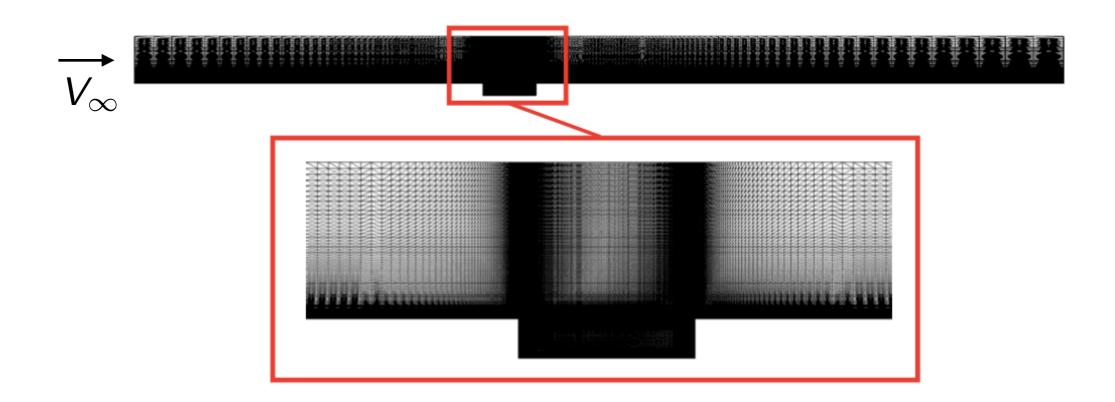
- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Identify structure in data
- 3. *Reduction:* Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$
- 1. Reduce the number of unknowns 2. Reduce the number of equations



Galerkin ODE:
$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t, \boldsymbol{\mu})$$



Captive carry



→ Unsteady Navier-Stokes → Re = 6.3×10^6 → $M_{\infty} = 0.6$

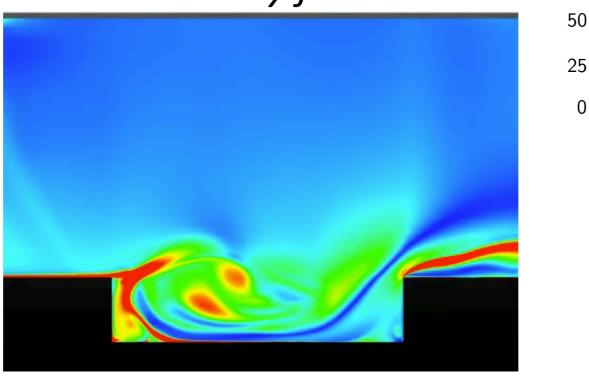
Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

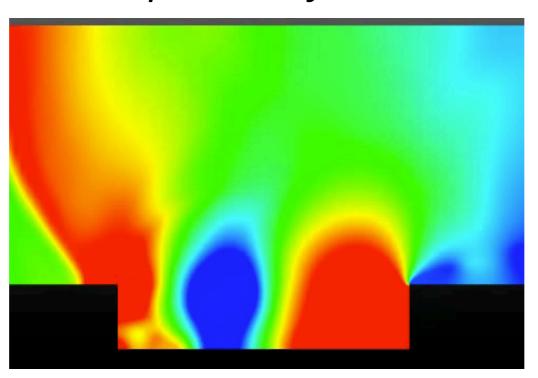
Temporal discretization

- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

High-fidelity model solution



pressure field

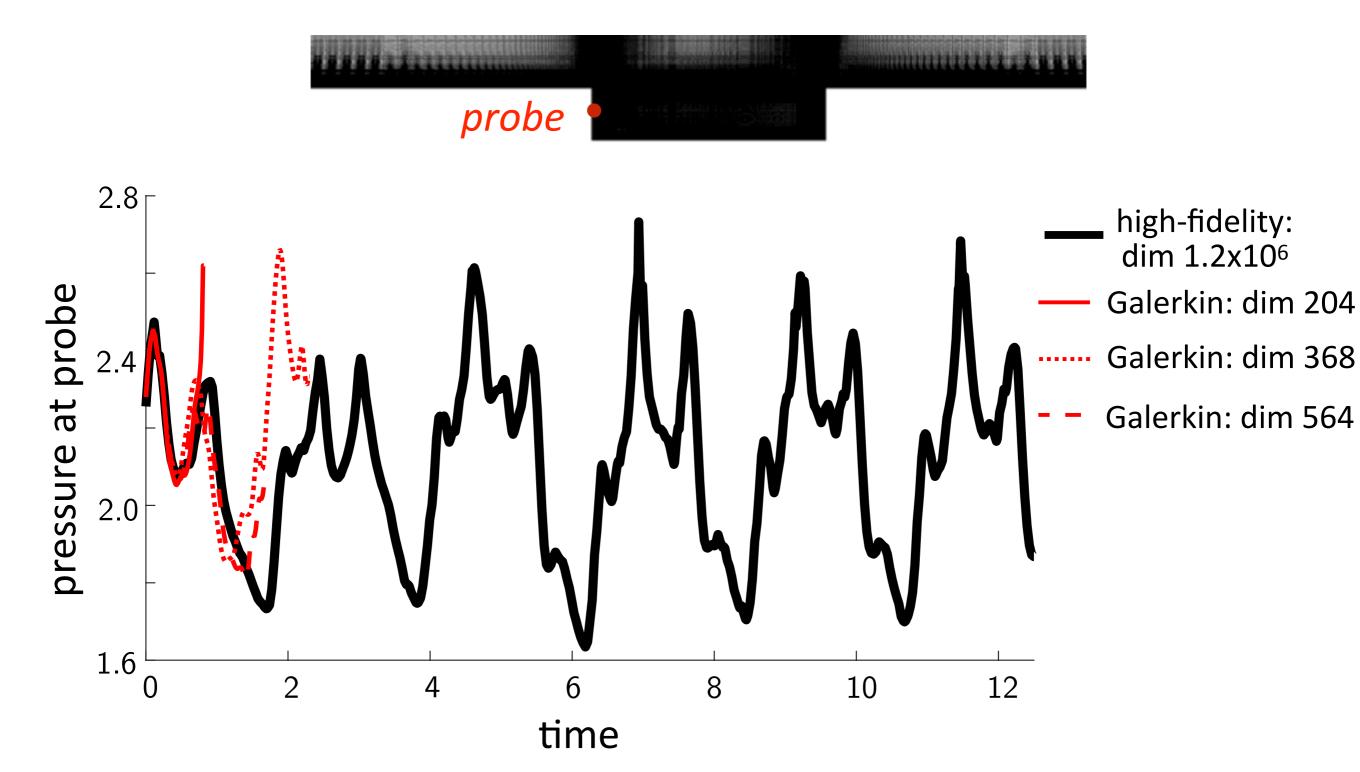


23

20

17

Galerkin performance



- Galerkin projection fails regardless of basis dimension

Can we construct a better projection?

Nonlinear model reduction Kevin Carlberg

15

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$



Galerkin ODE

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)$$

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

Galerkin ODE

$$\Phi \frac{d\hat{\mathbf{x}}}{dt} = \Phi \Phi^{\mathsf{T}} \mathbf{f}(\Phi \hat{\mathbf{x}}; t)$$

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\operatorname{argmin}} ||\mathbf{r}(\mathbf{v}, \mathbf{x}; t)||_{2}$$

$$\mathbf{r}(\mathbf{v}, \mathbf{x}; t) := \mathbf{v} - \mathbf{f}(\mathbf{x}; t)$$

ΟΔΕ

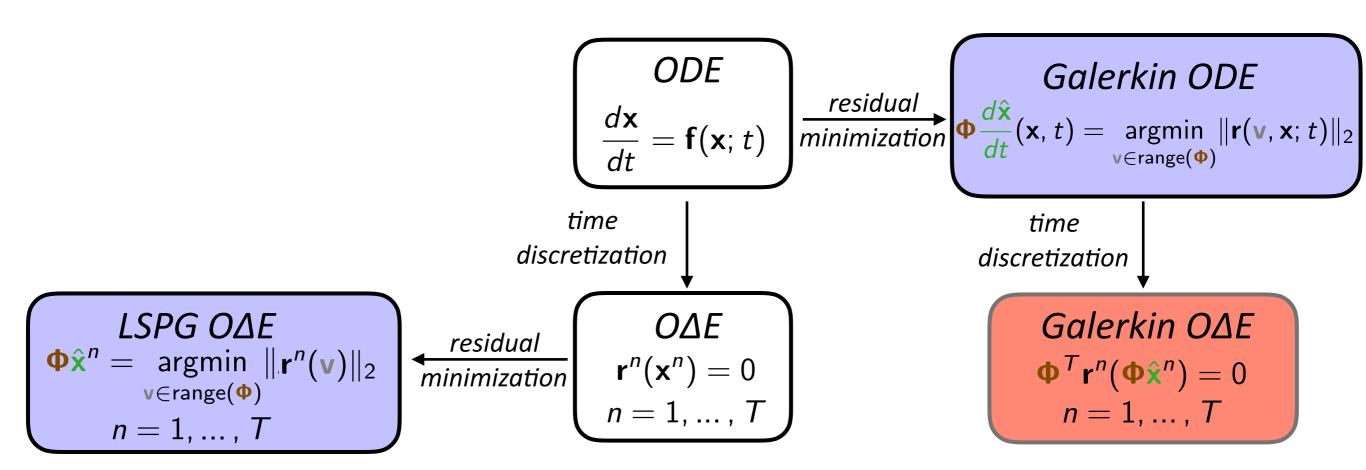
$$\mathbf{r}^{n}(\mathbf{x}^{n}) = 0, \ n = 1, ..., T$$

$$\mathbf{\Phi}^T \mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{x}}^n) = 0, \quad n = 1, ..., T$$

$$\mathbf{r}^{n}(\mathbf{x}) := \alpha_{0}\mathbf{x} - \Delta t \beta_{0}\mathbf{f}(\mathbf{x}; t^{n}) + \sum_{j=1}^{k} \alpha_{j}\mathbf{x}^{n-j} - \Delta t \sum_{j=1}^{k} \beta_{j}\mathbf{f}(\mathbf{x}^{n-j}; t^{n-j})$$

- Time-discrete Galerkin solution: not generally optimal in any sense

Residual minimization and time discretization



Least-squares Petrov-Galerkin (LSPG) projection [C., Bou-Mosleh, Farhat, 2011]

Error bound

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

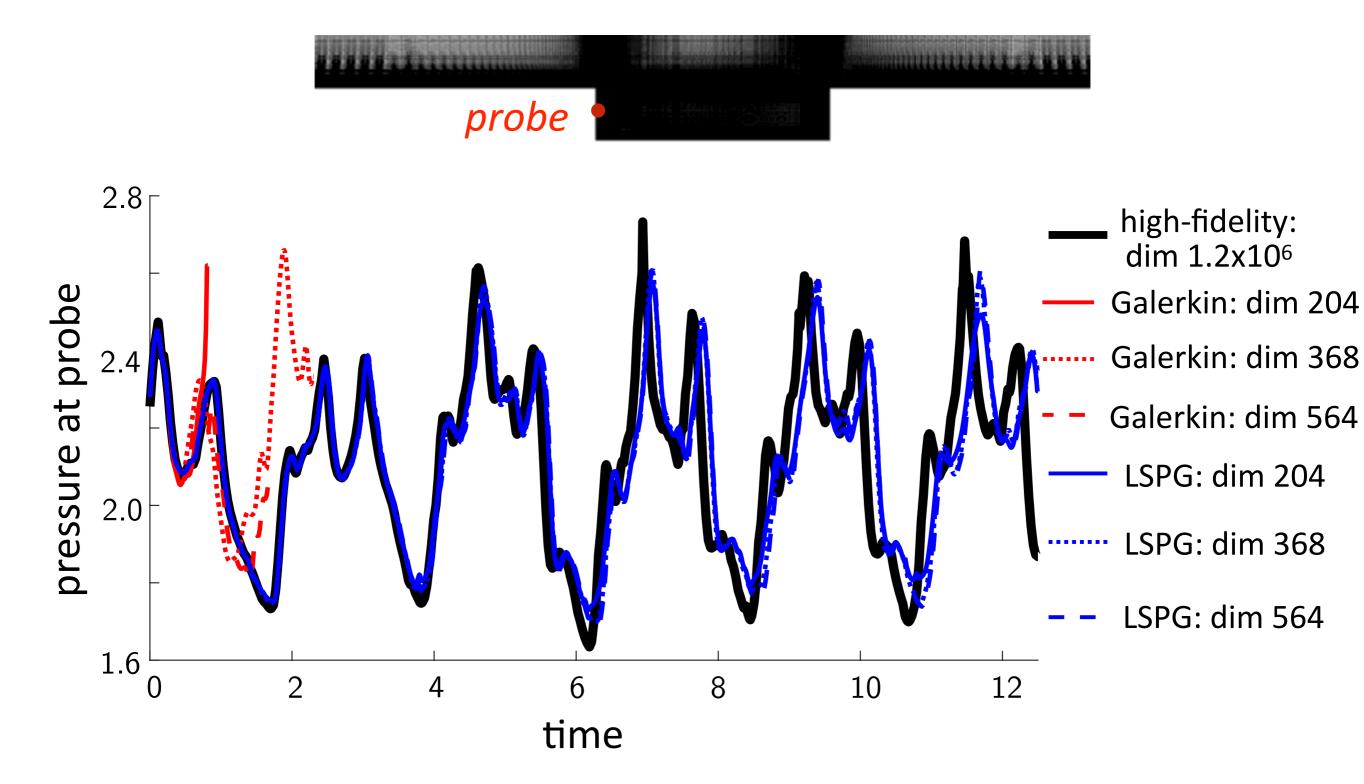
- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$, then

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n}\|_{2} \leq \frac{1}{h}\|\mathbf{r}_{\mathsf{G}}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{G}}^{n-\ell}\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n}\|_{2} \leq \frac{1}{h}\min_{\hat{\mathbf{v}}}\|\mathbf{r}_{\mathsf{LSPG}}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} + \frac{1}{h}\sum_{\ell=1}^{k}|\alpha_{\ell}|\|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^{n-\ell}\|_{2}$$

+ LSPG sequentially minimizes the error bound

LSPG performance



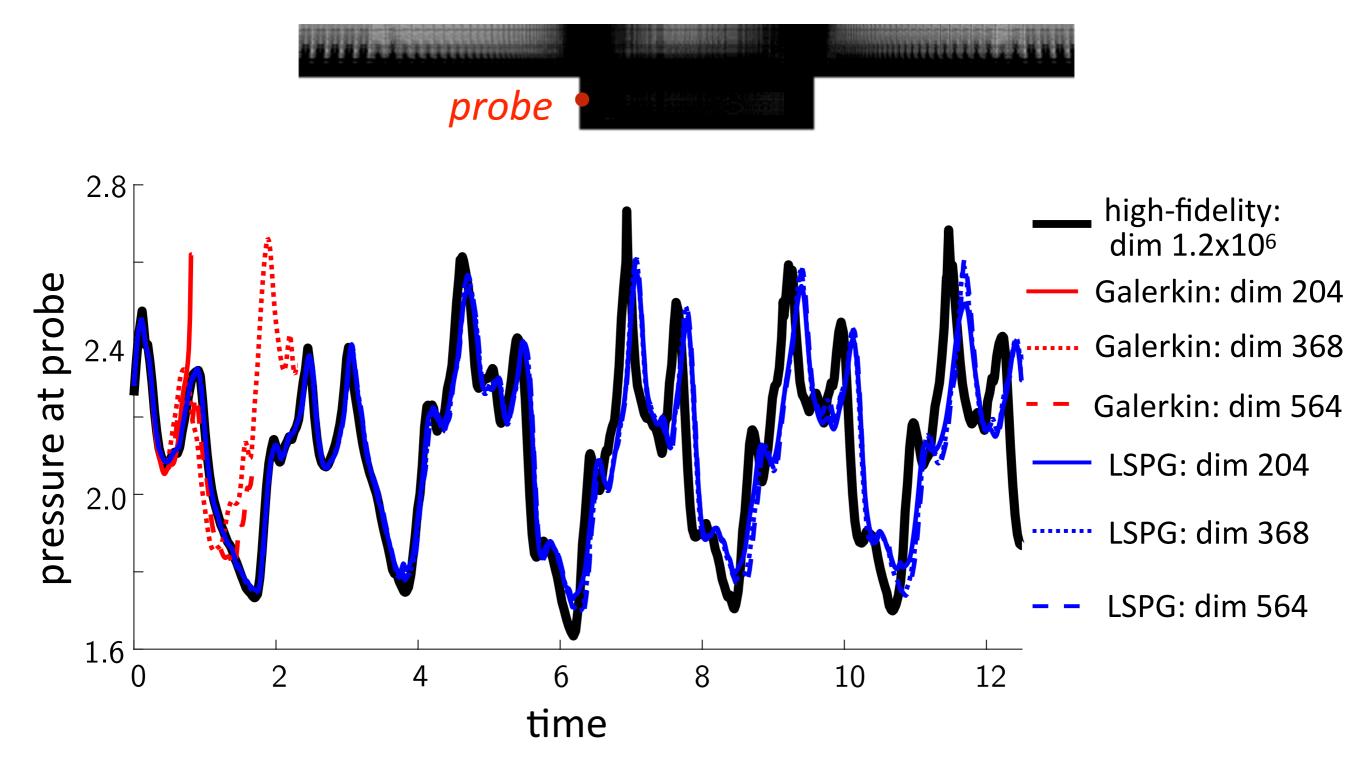
+ LSPG is far more accurate than Galerkin

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- /ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013*]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborators: Julien Cortial (Stanford), Charbel Farhat (Stanford)

Wall-time problem

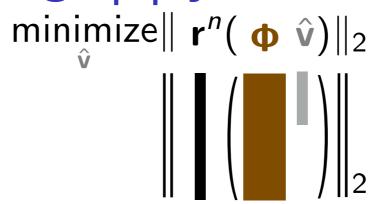


- High-fidelity simulation: 1 hour, 48 cores
- Fastest LSPG simulation: 1.3 hours, 48 cores

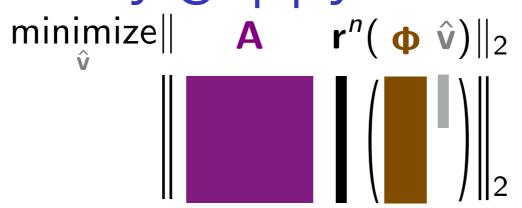
Why does this occur?
Can we fix it?

21

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

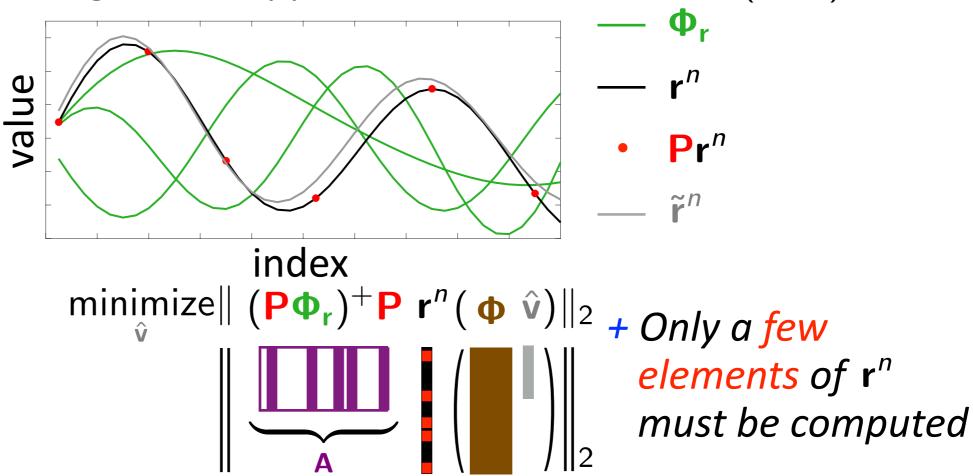


Cost reduction by gappy PCA [Everson and Sirovich, 1995]

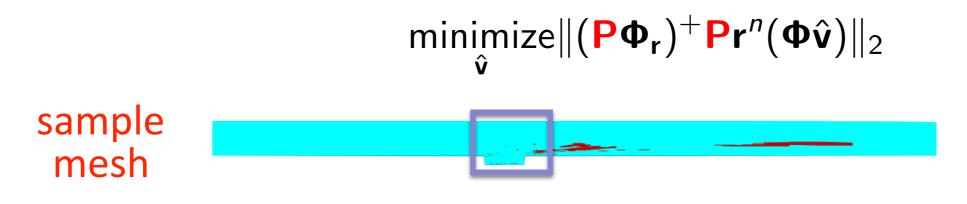


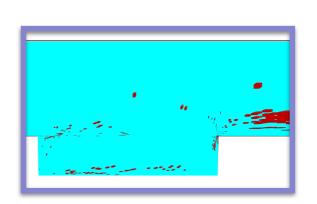
Can we introduce a weighting matrix A to make this less expensive?

- ullet Training: collect residual tensor \mathcal{R}^{ijk} while solving ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$
- Machine learning: compute residual PCA Φ_r and sampling matrix P
- **Reduction**: compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_{\mathbf{r}}(\mathbf{P}\Phi_{\mathbf{r}})^+\mathbf{P}\mathbf{r}^n$



Sample mesh [C., Farhat, Cortial, Amsallem, 2013]





23

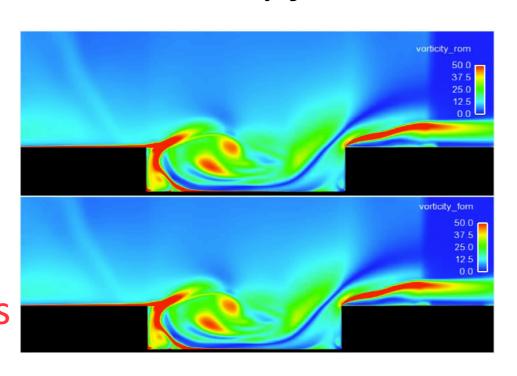
+ HPC on a laptop

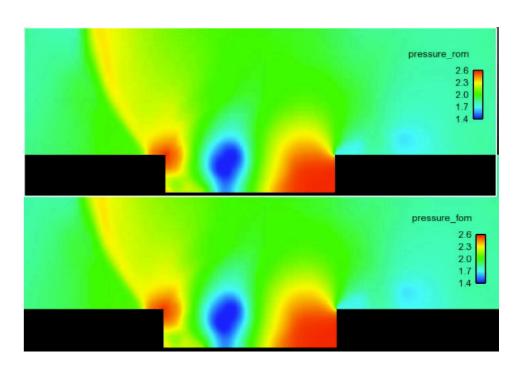
vorticity field

pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_r)^+\mathbf{P}$ 32 min, 2 cores

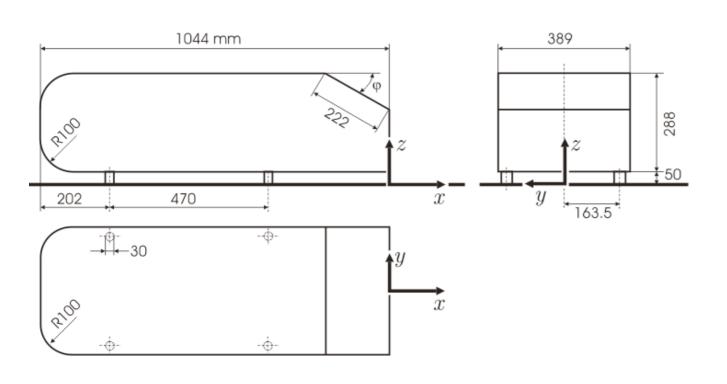
high-fidelity
5 hours, 48 cores

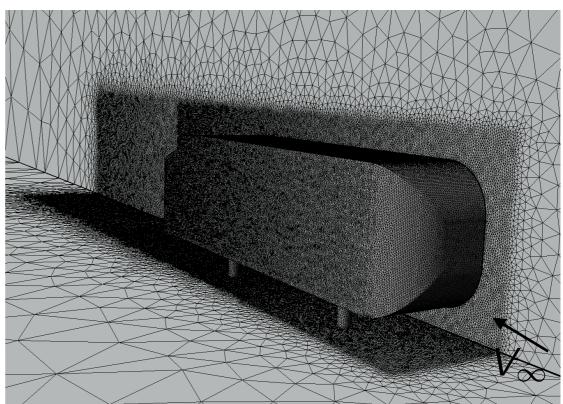




- + 229x savings in core-hours
- + < 1% error in time-averaged drag

Ahmed body [Ahmed, Ramm, Faitin, 1984]





→ Unsteady Navier-Stokes → Re = 4.3×10^6 → $M_{\infty} = 0.175$

Spatial discretization

- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5} \text{s}$

• 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

sample mesh

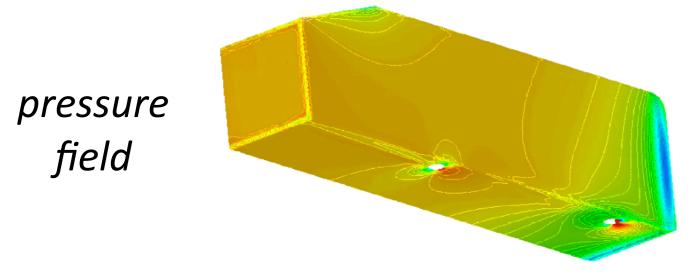


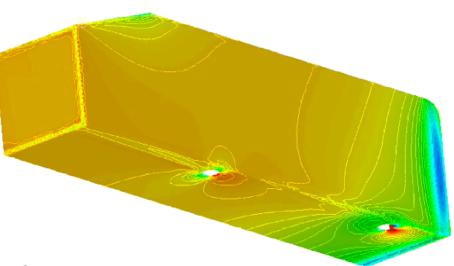
+ HPC on a laptop

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{r})^{+}\mathbf{P}$

4 hours, 4 cores

high-fidelity model 13 hours, 512 cores





+ 438x savings in core—hours

+ Largest nonlinear dynamical system on which ROM has ever had success

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
- Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborator: Youngsoo Choi

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

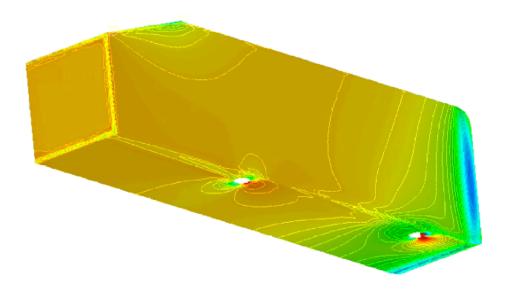
GNAT ROM ($\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_r)^+\mathbf{P}$)
4 hours, 4 cores

pressure field

spatial dim: 283

temporal dim: 1.3 x 10³

high-fidelity model 13 hours, 512 cores



spatial dim: 1.7 x 10⁷

temporal dim: 1.3 x 10³

- + 438X computational-cost reduction
- + 60,500X spatial-dimension reduction
- Zero temporal-dimension reduction

How can we significantly reduce the temporal dimensionality?

Reducing temporal complexity:

Larger time steps with ROM

[Krysl et al., 2001; Lucia et al., 2004; Taylor et al., 2010; C. et al., 2017]

- Developed for explicit and implicit integrators
- Limited reduction of time dimension: <10X reductions typical

Space-time ROMs

- Reduced basis [Urban, Patera, 2012; Yano, 2013; Urban, Patera, 2014; Yano, Patera, Urban, 2014]
- POD-Galerkin [Volkwein, Weiland, 2006; Baumann, Benner, Heiland, 2016]
- ODE-residual minimization [Constantine, Wang, 2012]
- + Reduction of time dimension
- + Linear time-growth of error bounds
- Requires space—time finite element discretization^ˆ
- No hyper-reduction
- Only one space—time basis vector per training simulation

[^] Only reduced-basis methods

Preserve attractive properties of existing space—time ROMs

- + Reduce both space and time dimensions
- + Slow time-growth of error bound

Overcome shortcomings of existing space—time ROMs

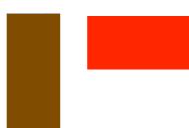
- + Applicability to general nonlinear dynamical systems
- + Hyper-reduction
- + Extract multiple space—time basis vectors from each training simulation

Space—time least-squares Petrov—Galerkin (ST-LSPG) projection [Choi and C., 2019]

Spatial v. spatiotemporal subspaces

High-fidelity-model trial subspace

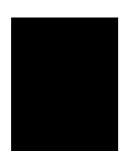
$$\begin{bmatrix} \mathbf{x}^1 & \cdots & \mathbf{x}^T \end{bmatrix} \in \mathbb{R}^N \otimes \mathbb{R}^T$$

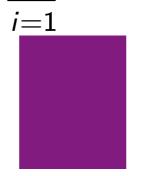


- Spatial dimension reduced
- Temporal dimension large

Space-time trial subspace

$$\left[\mathbf{ ilde{x}}^1 \ \cdots \ \mathbf{ ilde{x}}^T
ight] = \sum_{i=1}^{N_{st}} \pi_i \hat{x}_i(\boldsymbol{\mu}) \in \mathcal{ST} \subseteq \mathbb{R}^N \otimes \mathbb{R}^T$$

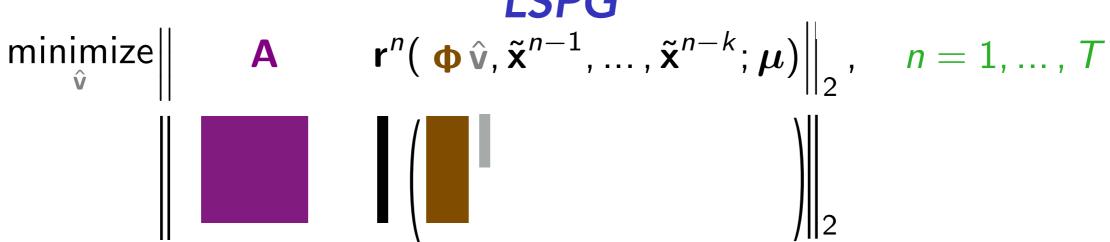




- Spatial dimension reduced
- Temporal dimension reduced

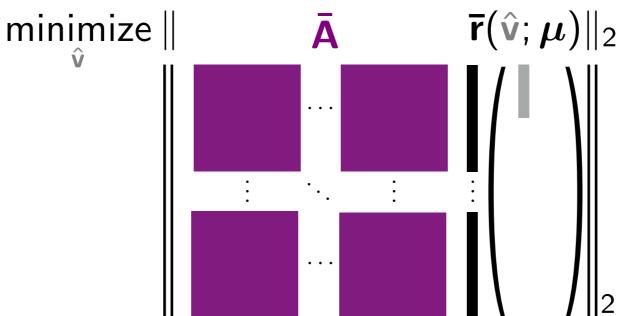
Space-time LSPG projection

LSPG



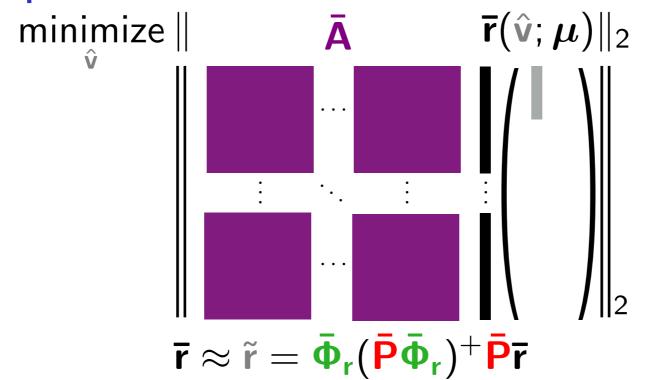
ST-LSPG

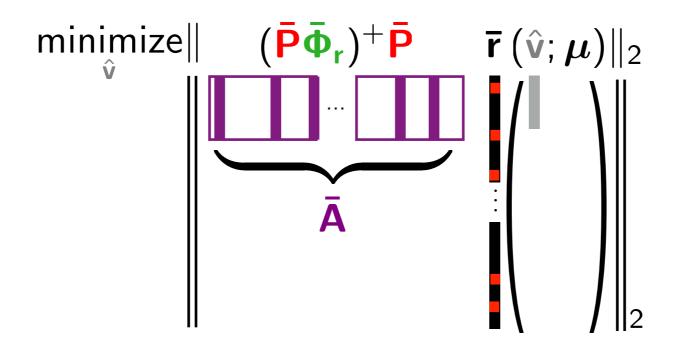
$$\bar{\mathbf{r}}(\hat{\mathbf{v}}; \boldsymbol{\mu}) := \begin{bmatrix}
\mathbf{r}^{1} \left(\sum_{i=1}^{n_{st}} \pi_{i}(t^{1}) \hat{v}_{i}, \sum_{i=1}^{n_{st}} \pi_{i}(t^{0}) \hat{v}_{i}; \boldsymbol{\mu} \right) \\
\vdots \\
\mathbf{r}^{T} \left(\sum_{i=1}^{n_{st}} \pi_{i}(t^{T}) \hat{v}_{i}, \sum_{i=1}^{n_{st}} \pi_{i}(t^{T-1}) \hat{v}_{i}, \dots, \sum_{i=1}^{n_{st}} \pi_{i}(t^{T-k}) \hat{v}_{i}; \boldsymbol{\mu} \right)
\end{bmatrix}$$



- + applicable to general nonlinear dynamical systems
- prohibitive cost: minimizing residual over all space and time

ST-LSPG hyper-reduction

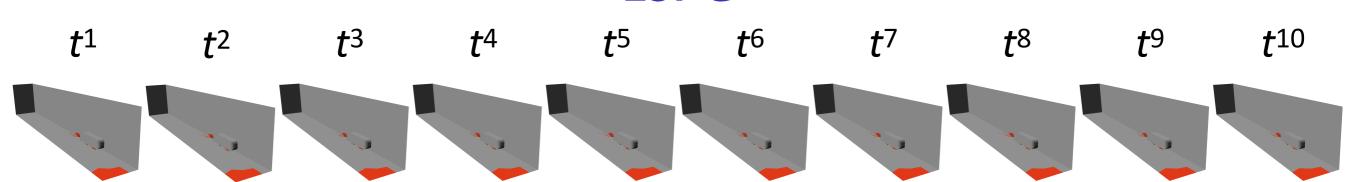




+ Residual computed at a few space-time degrees of freedom

Sample mesh

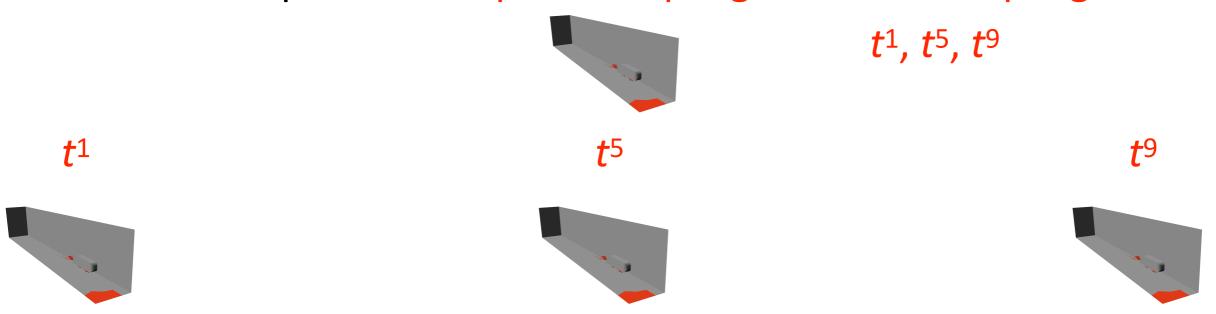
LSPG



- + Residual computed at a few spatial degrees of freedom
- Residual computed at all time instances

ST-LSPG

• P: Kronecker product of space sampling and time sampling



+ Residual computed at a few space—time degrees of freedom

Error bound

LSPG

- Sequential solves: sequential accumulation of time-local errors

$$\|\mathbf{x}^n - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{LSPG}}^n\|_2 \leq \frac{\gamma_1(\gamma_2)^n \exp(\gamma_3 t^n)}{\gamma_4 + \gamma_5 \Delta t} \underbrace{\max_{j \in \{1, \dots, n\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{\mathsf{LSPG}}^j(\mathbf{\Phi}\hat{\mathbf{v}})\|_2}_{\text{worst best time-local approximation residual}}$$

- Stability constant: exponential time growth
- bounded by the worst (over time) best residual

+ Single solve: no sequential error accumulation

$$\|\mathbf{x}^n - \mathbf{\Phi}\hat{\mathbf{x}}_{\mathsf{ST-LSPG}}^n\|_2 \leq \sqrt{T}(1+\Lambda) \underbrace{\min_{\mathbf{w} \in \mathcal{ST}} \max_{j \in \{1,...,T\}} \|\mathbf{x}^n - \mathbf{w}^n\|_2}_{\mathbf{w} \in \mathcal{ST}}$$

best space-time approximation error

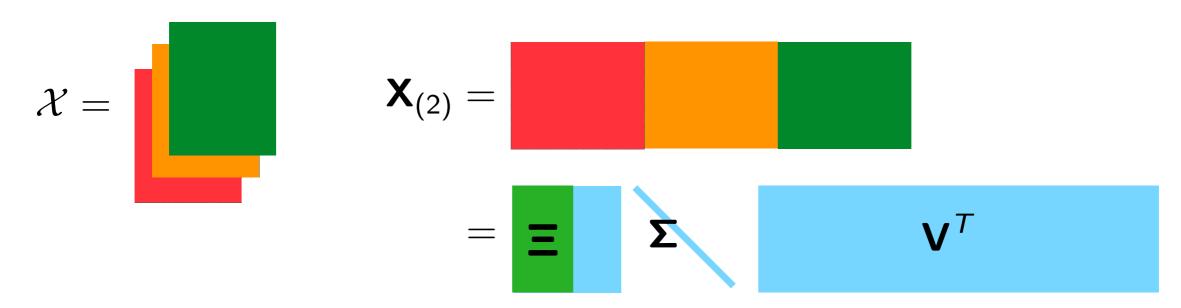
34

- + Stability constant: polynomial growth in time with degree 3/2
- + bounded by best space—time approximation error

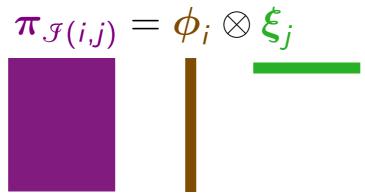
How to construct space-time trial basis $\{m{\pi}_i\}_{i=1}^{n_{\mathsf{st}}}$ from training data?

Algorithm

- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Compute truncated high-order SVD (T-HOSVD)
- 3. *Reduction:* Solve space—time LSPG for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$



= columns are principal components of the **temporal** simulation data



- + N+T storage per basis vector
- Experiments: for fixed error, ST-LSPG almost 100X faster than LSPG

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

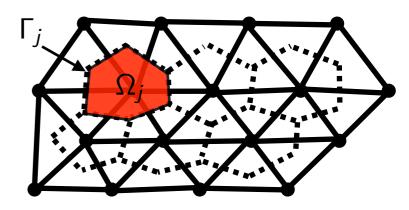
- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborators: Youngsoo Choi (Sandia), Syuzanna Sargsyan (UW)

Finite-volume method

$$ODE: \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$

$$x_{\mathcal{I}(i,j)}(t) = \frac{1}{|\Omega_j|} \int_{\Omega_j} u_i(\vec{x}, t) d\vec{x}$$



37

average value of conserved variable i over control volume j

$$f_{\mathcal{I}(i,j)}(\mathbf{x},t) = -\frac{1}{|\Omega_j|} \int_{\Gamma_j} \underbrace{\mathbf{g}_i(\mathbf{x};\vec{x},t)}_{\text{flux}} \cdot \mathbf{n}_j(\vec{x}) \, d\vec{s}(\vec{x}) + \frac{1}{|\Omega_j|} \int_{\Omega_j} \underbrace{\mathbf{s}_i(\mathbf{x};\vec{x},t)}_{\text{source}} \, d\vec{x}$$

• flux and source of conserved variable i within control volume j

$$r_{\mathcal{I}(i,j)} = \frac{dx_{\mathcal{I}(i,j)}}{dt}(t) - f_{\mathcal{I}(i,j)}(\mathbf{x},t)$$

rate of conservation violation of variable i in control volume j

O
$$\Delta$$
E: $\mathbf{r}^n(\mathbf{x}^n) = 0, n = 1, ..., N$

$$r_{\mathcal{I}(i,j)}^n = x_{\mathcal{I}(i,j)}(t^{n+1}) - x_{\mathcal{I}(i,j)}(t^n) + \int_{t^n}^{t^{n+1}} f_{\mathcal{I}(i,j)}(\mathbf{x},t) dt$$

conservation violation of variable i in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods

Conservative model reduction [C., Choi, Sargsyan, 2018]

Galerkin

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_{2}$$

 Minimize sum of squared conservation-violation rates

LSPG

$$\mathbf{\Phi}\hat{\mathbf{x}}^n = \underset{\mathbf{v} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{arg}\,\mathsf{min}} \, \|\mathbf{r}^n(\mathbf{v})\|_2$$

 Minimize sum of squared conservation violations over time step n

Neither enforces conservation!

Conservative Galerkin

minimize
$$\|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_2$$

 $\mathbf{v} \in \mathsf{range}(\Phi)$

subject to
$$Cr(v, x; t) = 0$$

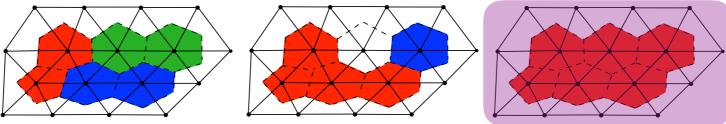
 Minimize sum of squared conservation-violation rates subject to zero conservation-violation rates over subdomains

Conservative LSPG

minimize
$$\|\mathbf{r}^n(\mathbf{v})\|_2$$
 $\mathbf{v} \in \mathsf{range}(\Phi)$

subject to
$$\mathbf{Cr}^n(\mathbf{v}) = \mathbf{0}$$

 Minimize sum of squared conservation violations over time step n subject to zero conservation violations over time step n over subdomains



+ Conservation enforced over prescribed subdomains

Experiments: enforcing global conservation can reduce error by 10X

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Collaborator: Kookjin Lee

Model reduction can work well...

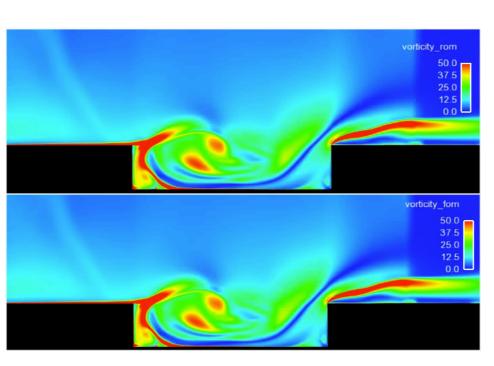
vorticity field

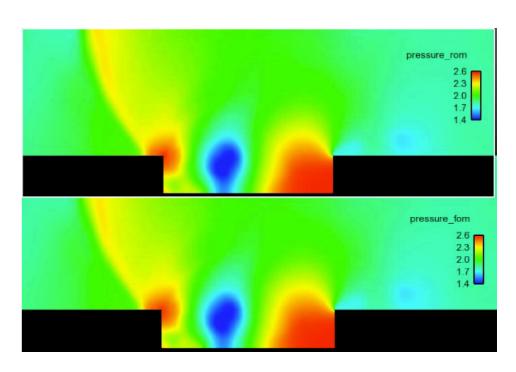
pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_{\mathsf{r}})^{+}\mathbf{P}$

32 min, 2 cores

high-fidelity 5 hours, 48 cores





- + 229x savings in core—hours
- + < 1% error in time-averaged drag

... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- Linear-subspace assumption is strong
- 2) Accuracy limited by information in ϕ

Kevin Carlberg

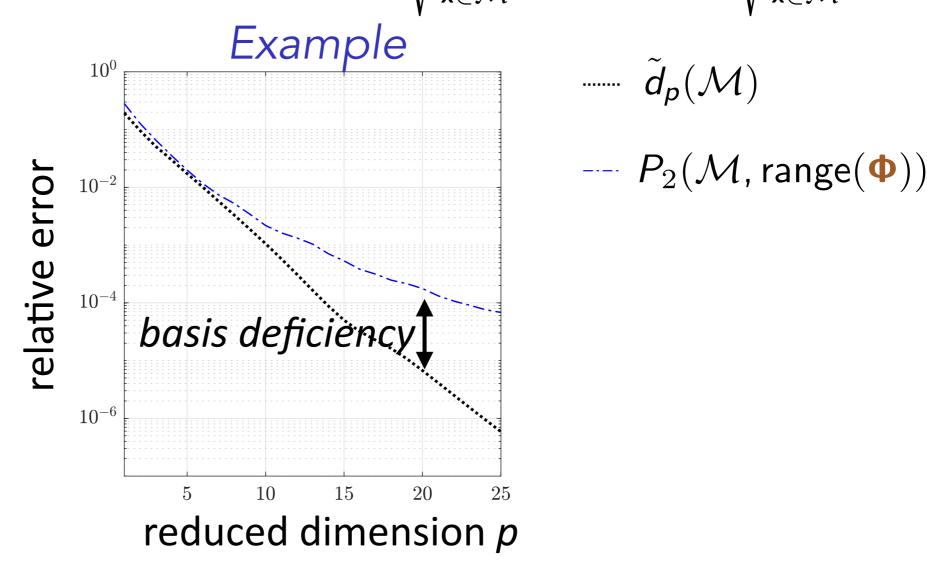
- $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold
- S_p : set of all p-dimensional linear subspaces

$$\bullet \ d_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_{\infty}(\mathcal{M}, \mathcal{S}), P_{\infty}(\mathcal{M}, \mathcal{S}) := \sup_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|$$

• $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \, \boldsymbol{\mu} \in \mathcal{D} \}$: solution manifold

• S_p : set of all *p*-dimensional linear subspaces

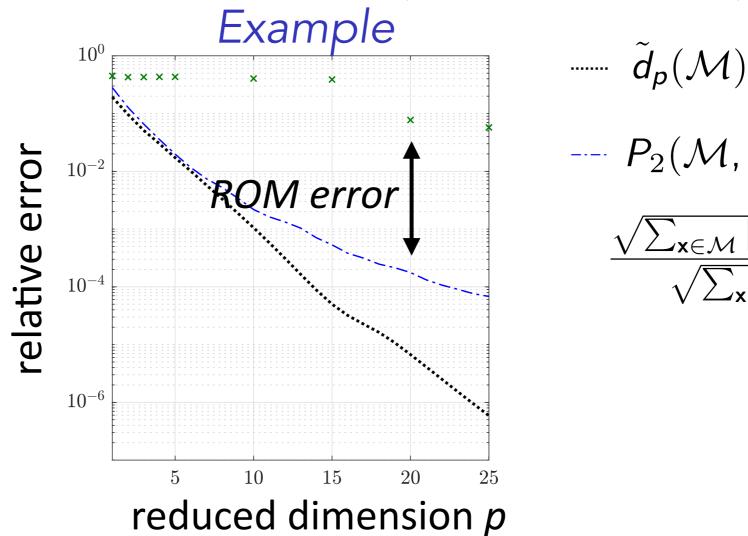
$$\check{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}}$$



• $\mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \ \boldsymbol{\mu} \in \mathcal{D} \} : \mathsf{solution} \ \mathsf{manifold}$

 \cdot S_p : set of all p-dimensional linear subspaces

$$\tilde{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}$$

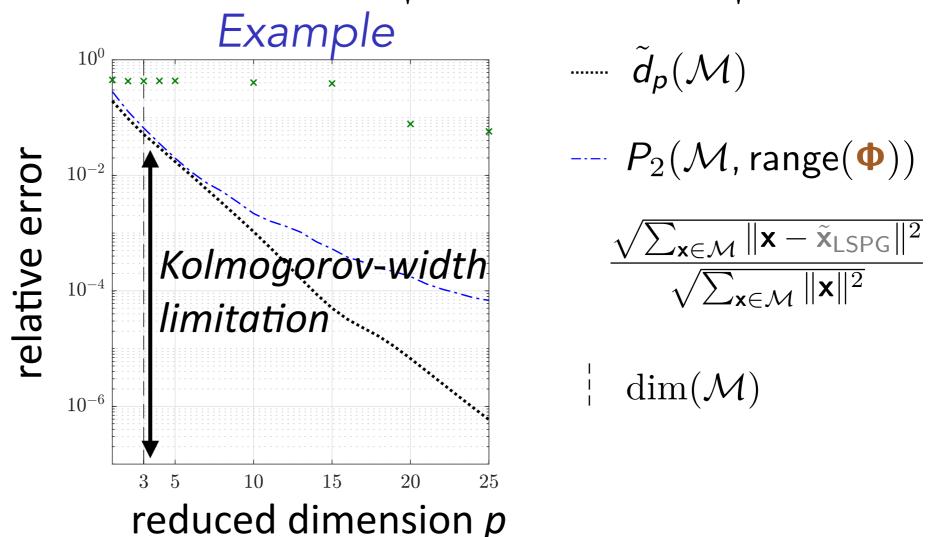


 $--P_2(\mathcal{M}, \mathsf{range}(\mathbf{\Phi}))$

$$\frac{\sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x} - \tilde{\mathbf{x}}_{\mathsf{LSPG}}\|^2}}{\sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}}$$

- $ightharpoonup \mathcal{M} := \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T_{\mathsf{final}}], \ \boldsymbol{\mu} \in \mathcal{D} \} : \mathsf{solution} \ \mathsf{manifold}$
- S_p : set of all p-dimensional linear subspaces

$$\check{d}_p(\mathcal{M}) := \inf_{\mathcal{S} \in \mathcal{S}_p} P_2(\mathcal{M}, \mathcal{S}) , P_2(\mathcal{M}, \mathcal{S}) := \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \inf_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|^2 / \sqrt{\sum_{\mathbf{x} \in \mathcal{M}} \|\mathbf{x}\|^2}}$$



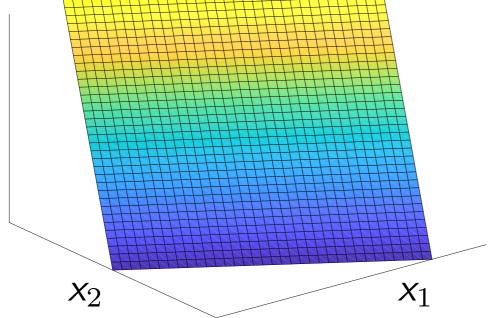
- Kolmogorov-width limitation: significant error for $p = \dim(\mathcal{M})$ Goal: overcome limitation via projection onto a nonlinear manifold

Nonlinear trial manifold

Linear trial subspace

$$\mathsf{range}(\mathbf{\Phi}) := \{\mathbf{\Phi}\hat{\mathbf{x}} \,|\, \hat{\mathbf{x}} \in \mathbb{R}^p\}$$

example x_3



state

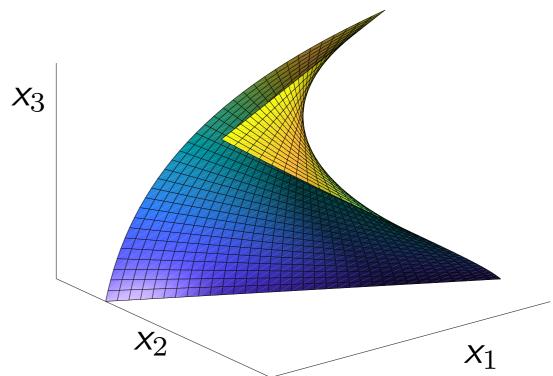
$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{\Phi} \, \hat{\mathbf{x}}(t) \in \text{range}(\mathbf{\Phi})$$

velocity
$$\frac{d}{d}$$

velocity
$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} \in \text{range}(\mathbf{\Phi})$$

Nonlinear trial manifold

$$\mathcal{S} := \{ \mathbf{g}(\hat{\mathbf{x}}) \, | \, \hat{\mathbf{x}} \in \mathbb{R}^p \}$$



$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \mathbf{g}(\hat{\mathbf{x}}(t)) \in \mathcal{S}$$

$$\frac{d\mathbf{x}}{dt} \approx \frac{d\tilde{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} \in T_{\hat{\mathbf{x}}} \mathcal{S}$$

Manifold Galerkin and LSPG projection

Linear-subspace ROM

Nonlinear-manifold ROM

Galerkin
$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}; t)\|_2$$

$$\bigcirc$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \text{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}, \mathbf{g}(\hat{\mathbf{x}}); t)\|_2$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}};t)\|_2 \qquad \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathcal{T}_{\hat{\mathbf{x}}}\mathcal{S}}{\mathsf{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}});t)\|_2$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}})^{+} \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t)$$

LSPG

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{\Phi}\hat{\mathbf{v}})\|_2$$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

+ Satisfy residual-minimization properties

Manifold Galerkin and LSPG projection

Linear-subspace ROM

Nonlinear-manifold ROM

Galerkin
$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{r}(\mathbf{\Phi}\hat{\mathbf{v}}, \mathbf{\Phi}\hat{\mathbf{x}}; t)\|_2$$

$$\updownarrow$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \text{range}(\mathbf{\Phi})}{\operatorname{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{\Phi}^T \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}};t)$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}, \mathbf{g}(\hat{\mathbf{x}}); t)\|_2$$

$$\mathbf{\Phi} \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathsf{range}(\mathbf{\Phi})}{\mathsf{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{\Phi}\hat{\mathbf{x}}; t)\|_{2} \qquad \nabla \mathbf{g}(\hat{\mathbf{x}}) \frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathcal{T}_{\hat{\mathbf{x}}}\mathcal{S}}{\mathsf{argmin}} \|\hat{\mathbf{v}} - \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t)\|_{2}$$

$$\frac{d\hat{\mathbf{x}}}{dt} = \nabla \mathbf{g}(\hat{\mathbf{x}})^{+} \mathbf{f}(\mathbf{g}(\hat{\mathbf{x}}); t)$$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \| \mathbf{r}^n(\mathbf{\Phi} \hat{\mathbf{v}}) \|_2$$

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

+ Satisfy residual-minimization properties

How to construct manifold $S:=\{\mathbf{g}(\hat{\mathbf{x}})\,|\,\hat{\mathbf{x}}\in\mathbb{R}^p\}$ from training data?

Deep autoencoders

Input layer Code Output layer X_1 \tilde{x}_2 X_2 \tilde{x}_3 X_3 \tilde{x}_4 X_4 \tilde{x}_5 *X*5 \hat{x}_2 \tilde{x}_6 *X*₆ $\tilde{\chi}_7$ *X*7 \tilde{x}_8 *X*₈

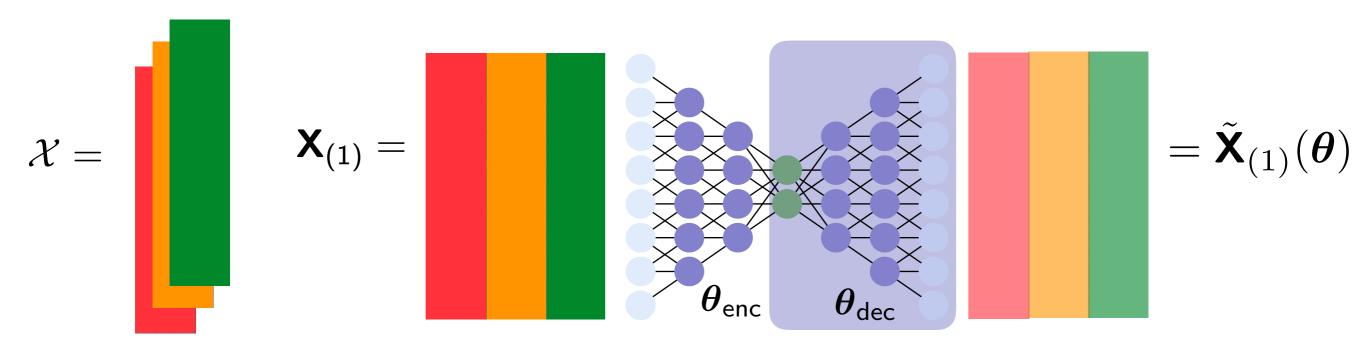
Encoder $h_{enc}(\cdot; \theta_{enc})$ Decoder $h_{dec}(\cdot; \theta_{dec})$

$$\tilde{\mathbf{x}} = \mathbf{h}_{\mathsf{dec}}(\cdot; \boldsymbol{\theta}_{\mathsf{dec}}) \circ \mathbf{h}_{\mathsf{enc}}(\mathbf{x}; \boldsymbol{\theta}_{\mathsf{enc}})$$

+ If $\tilde{\mathbf{x}} pprox \mathbf{x}$ for parameters $m{ heta}_{ ext{dec}}^\star$, $\mathbf{g} = \mathbf{h}_{ ext{dec}}(\cdot; m{ heta}_{ ext{dec}}^\star)$ produces an accurate manifold

Algorithm

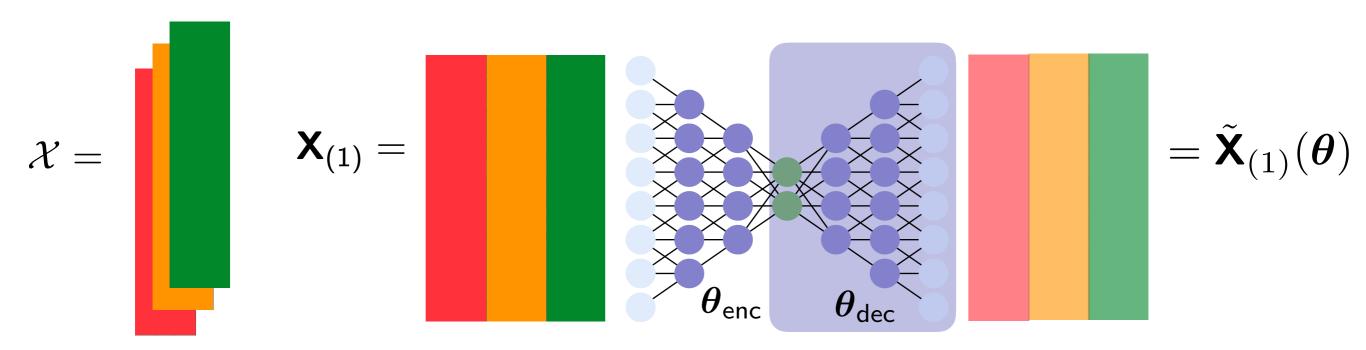
- 1. Training: Solve ODE for $oldsymbol{\mu} \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. Reduction: Solve manifold Galerkin or LSPG for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$



- Compute $m{ heta}^{\star}$ by approximately solving $\min_{m{ heta}} \|\mathbf{X}_{(1)} \hat{\mathbf{X}}_{(1)}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\text{dec}}(\cdot; \boldsymbol{\theta}_{\text{dec}}^{\star})$

Algorithm

- 1. Training: Solve ODE for $\mu \in \mathcal{D}_{\mathsf{training}}$ and collect simulation data
- 2. Machine learning: Train deep convolutional autoencoder
- 3. *Reduction:* Solve manifold Galerkin or LSPG for $m{\mu} \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$



- Compute $m{ heta}^{\star}$ by approximately solving $\min_{m{ heta}} \|\mathbf{X}_{(1)} \hat{\mathbf{X}}_{(1)}(m{ heta})\|_F$
- Define nonlinear trial manifold by setting $\mathbf{g} = \mathbf{h}_{\text{dec}}(\cdot; \boldsymbol{\theta}_{\text{dec}}^{\star})$

Numerical results

1D Burgers' equation

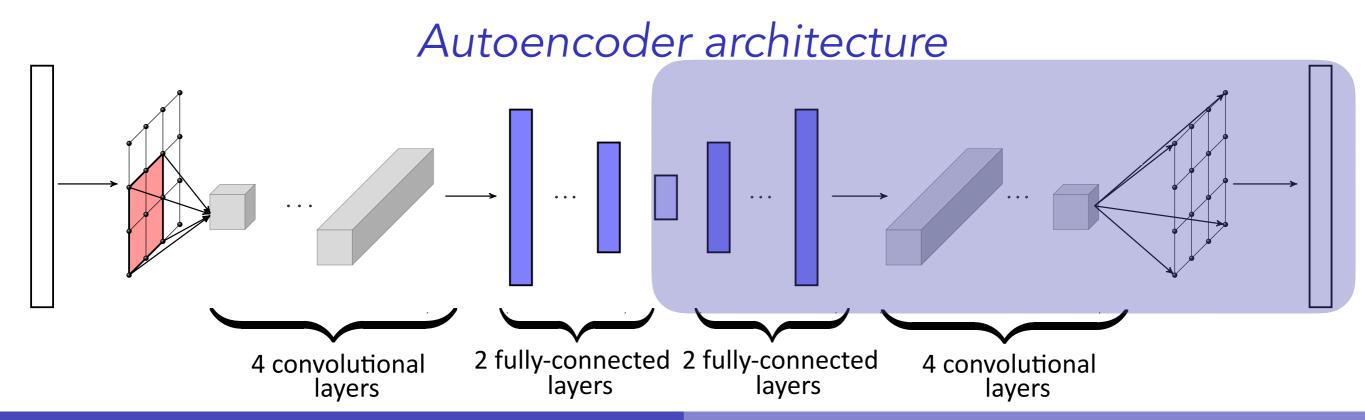
$$\frac{\partial w(x,t;\boldsymbol{\mu})}{\partial t} + \frac{\partial f(w(x,t;\boldsymbol{\mu}))}{\partial x} = 0.02e^{\alpha x}$$

2D Chemically reacting flow

$$\frac{\partial \mathbf{w}(\vec{x}, t; \boldsymbol{\mu})}{\partial t} = \nabla \cdot (\kappa \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu}))$$
$$- \mathbf{v} \cdot \nabla \mathbf{w}(\vec{x}, t; \boldsymbol{\mu}) + \mathbf{q}(\mathbf{w}(\vec{x}, t; \boldsymbol{\mu}); \boldsymbol{\mu})$$

- μ : α , inlet boundary condition
- Spatial discretization: finite volume
- Time integrator: backward Euler

- μ : two terms in reaction
- Spatial discretization: finite difference
- Time integrator: BDF2



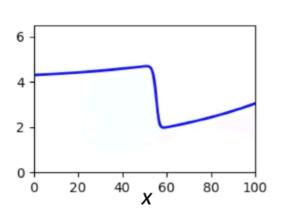
Manifold LSPG outperforms optimal linear subspace

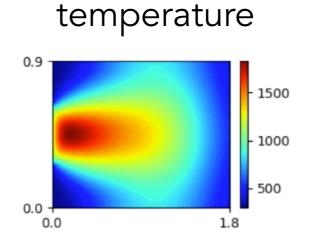
1D Burgers' equation

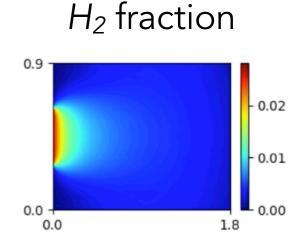
conserved variable

2D reacting flow

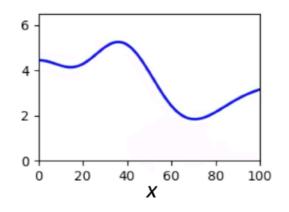
high-fidelity model

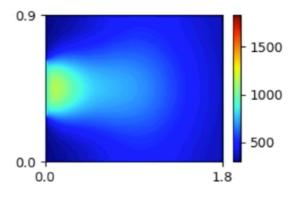


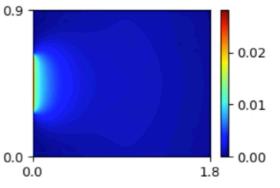




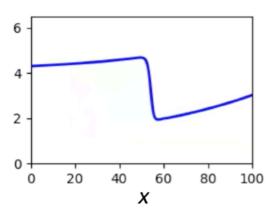
POD-LSPG p=5

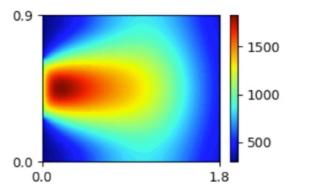


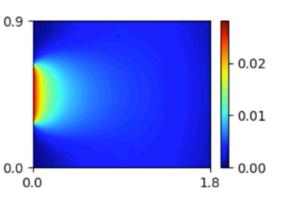




Manifold LSPG p=5

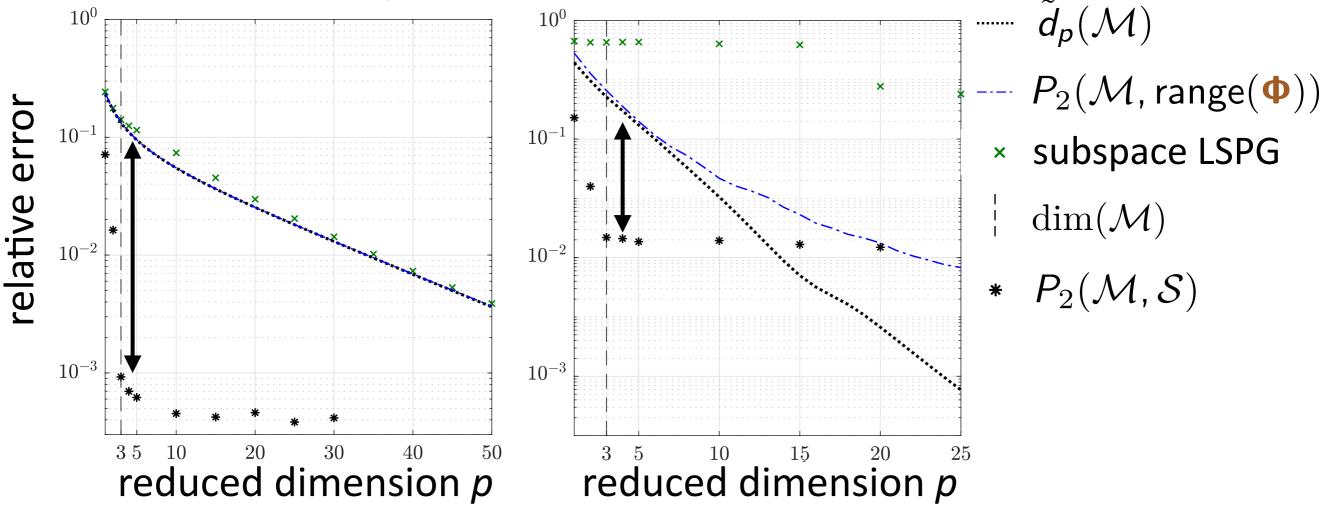






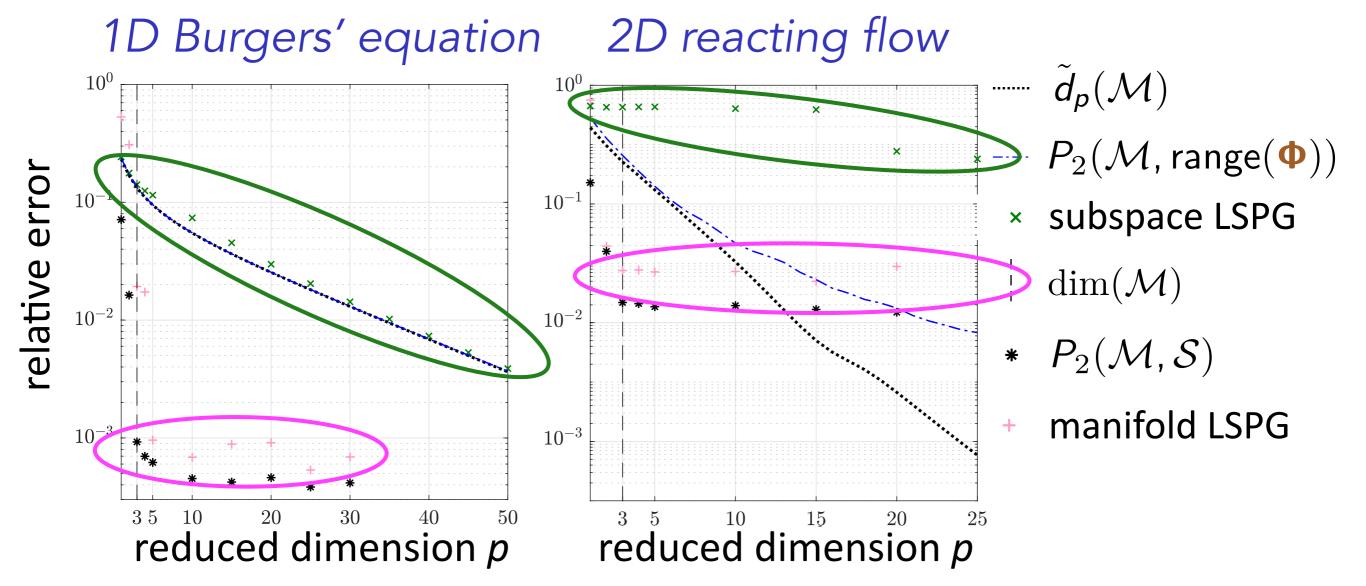
Method overcomes Kolmogorov-width limitation

1D Burgers' equation 2D reacting flow



+ Autoencoder manifold significantly better than optimal linear subspace

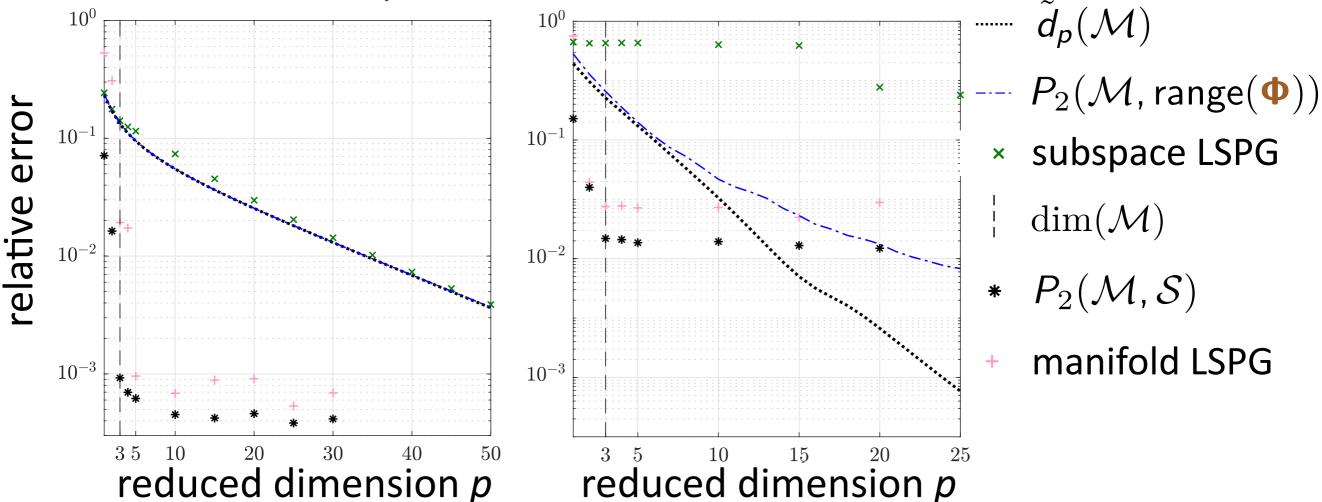
Method overcomes Kolmogorov-width limitation



- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG

Method overcomes Kolmogorov-width limitation

1D Burgers' equation 2D reacting flow



- + Autoencoder manifold significantly better than optimal linear subspace
- + Manifold LSPG orders-of-magnitude more accurate than subspace LSPG
- + Improves generalization performance

Outlook

Manifold Galerkin

$$\frac{d\hat{\mathbf{x}}}{dt} = \underset{\hat{\mathbf{v}} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{r}(\nabla \mathbf{g}(\hat{\mathbf{x}})\hat{\mathbf{v}}, \mathbf{g}(\hat{\mathbf{x}}); t)\|_2$$

Manifold LSPG

$$\hat{\mathbf{x}}^n = \underset{\hat{\mathbf{v}} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{r}^n(\mathbf{g}(\hat{\mathbf{v}}))\|_2$$

Interpretation

First work demonstrating physics-constrained time evolution of codes

Gradient computation

- Backpropagation used to compute decoder Jacobian $\nabla \mathbf{g}(\hat{\mathbf{x}})$
- Quasi-Newton solvers directly call TensorFlow

Forward-compatible extensions

- Sample mesh: convolutional layers preserve sparsity
- Structure preservation: equality constraints enforcing conservation

Future work

- Detailed study of architecture, amount of requisite training
- Integration in large-scale code

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Model reduction can work well...

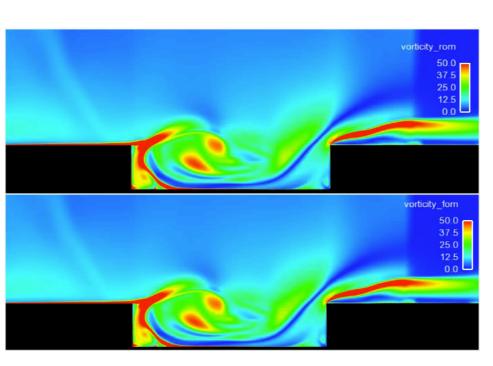
vorticity field

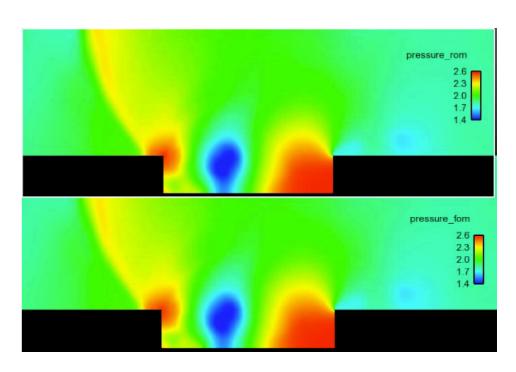
pressure field

LSPG ROM with $\mathbf{A} = (\mathbf{P}\mathbf{\Phi}_r)^+\mathbf{P}$

32 min, 2 cores

high-fidelity
5 hours, 48 cores





- + 229x savings in core-hours
- + < 1% error in time-averaged drag

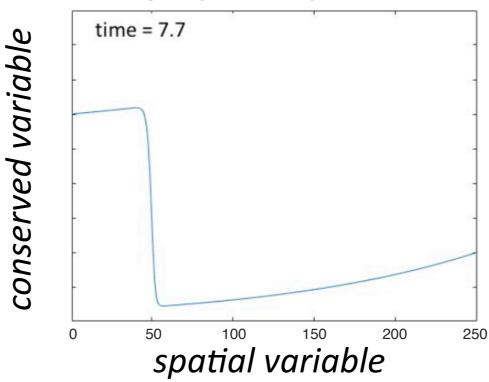
... however, this is not guaranteed

$$\mathbf{x}(t) pprox \mathbf{\Phi} \ \hat{\mathbf{x}}(t)$$

- 1) Linear-subspace assumption is strong
- 2) Accuracy limited by information in ϕ

Illustration: inviscid 1D Burgers' equation

high-fidelity model



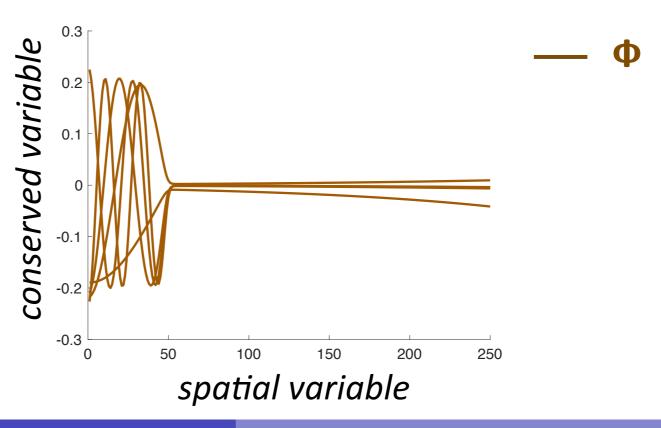
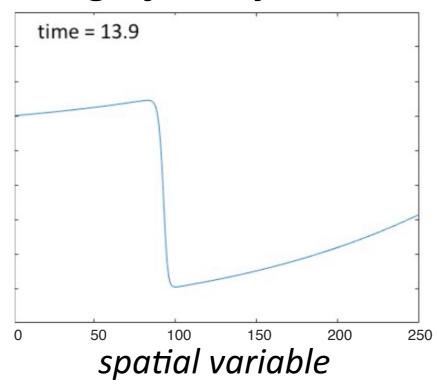


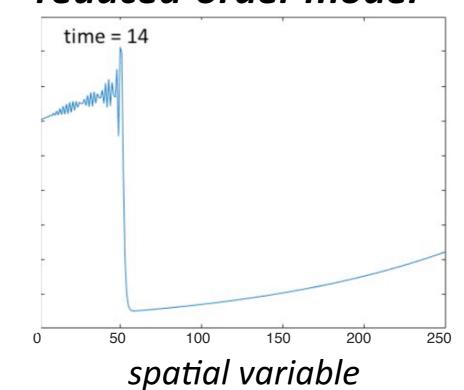
Illustration: inviscid 1D Burgers' equation

high-fidelity model



reduced-order model

conserved variable



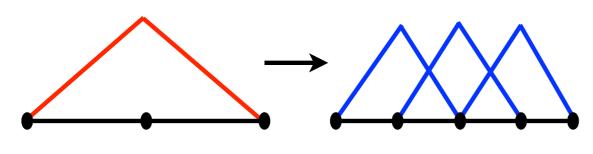
reduced-order model inaccurate when Φ insufficient

54

Main idea [c., 2015]

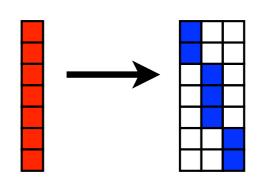
Model-reduction analogue to mesh-adaptive h-refinement

'Split' basis vectors

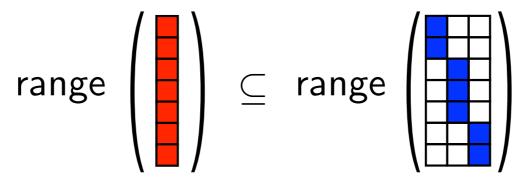


finite-element h-refinement

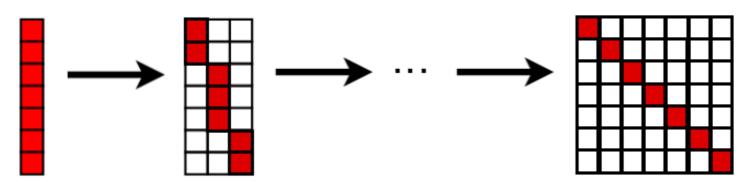
Generate hierarchical subspaces

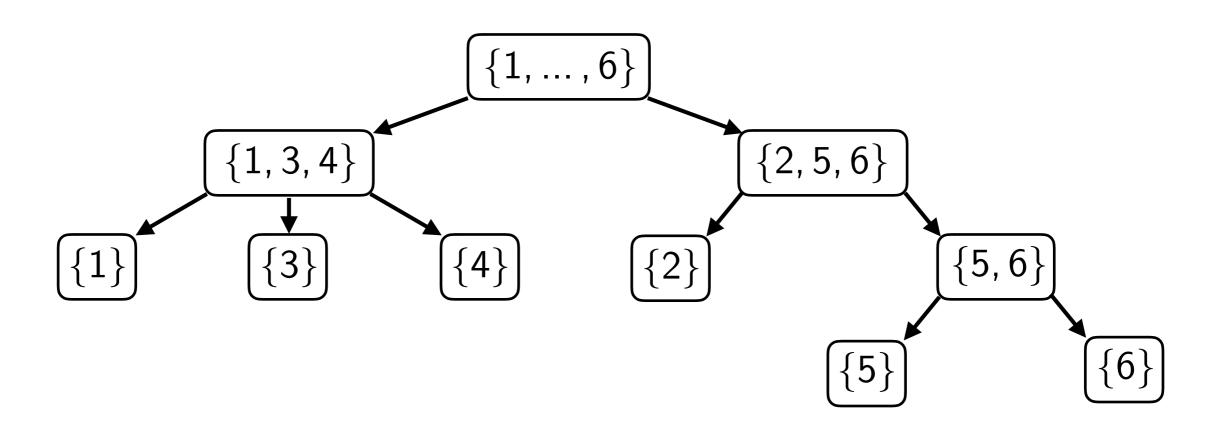


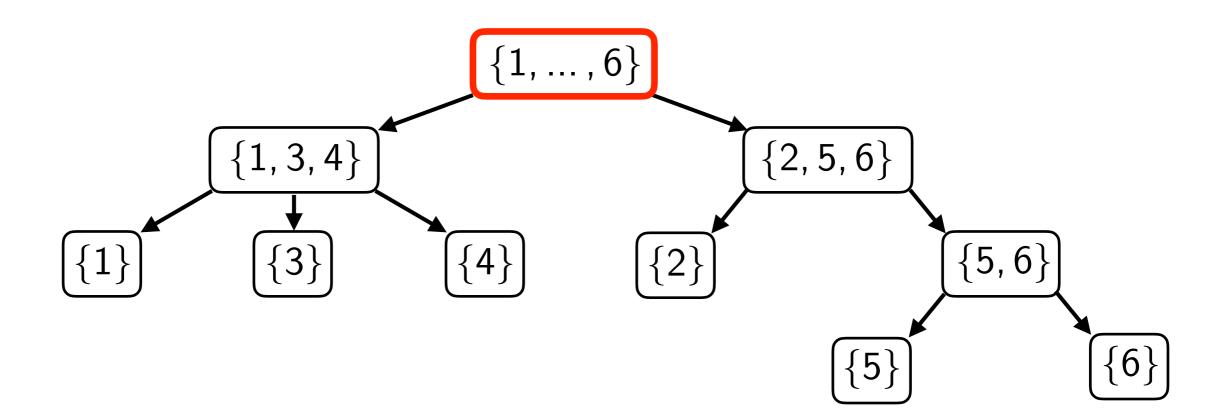
reduced-order-model h-refinement

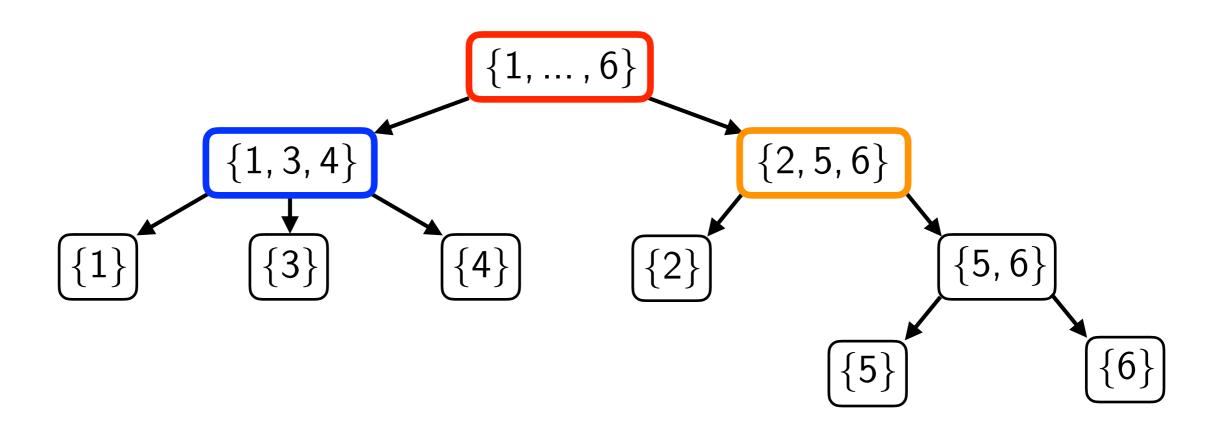


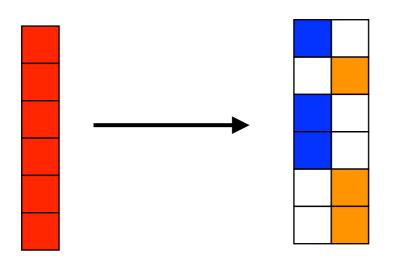
Converges to the high-fidelity model

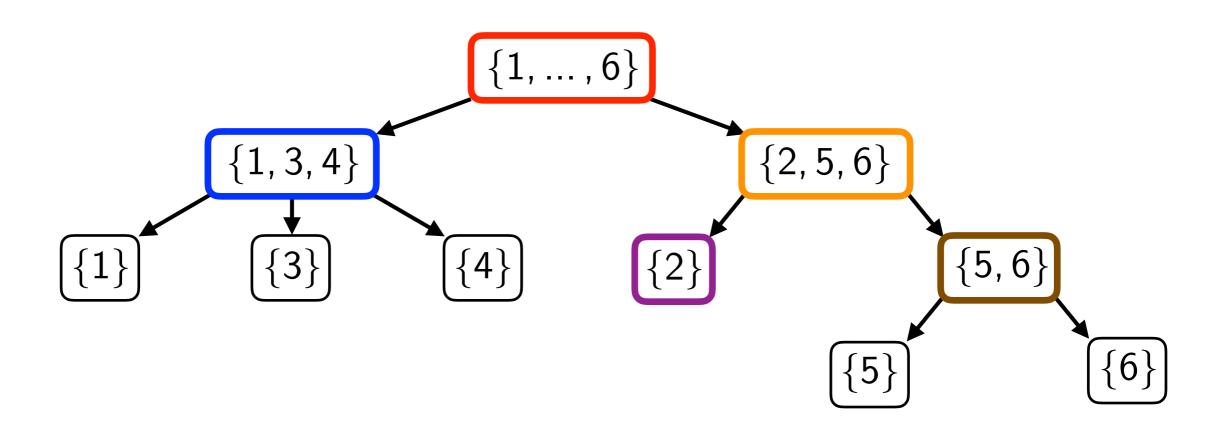


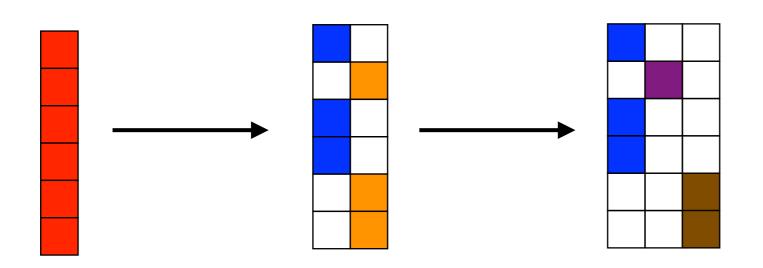


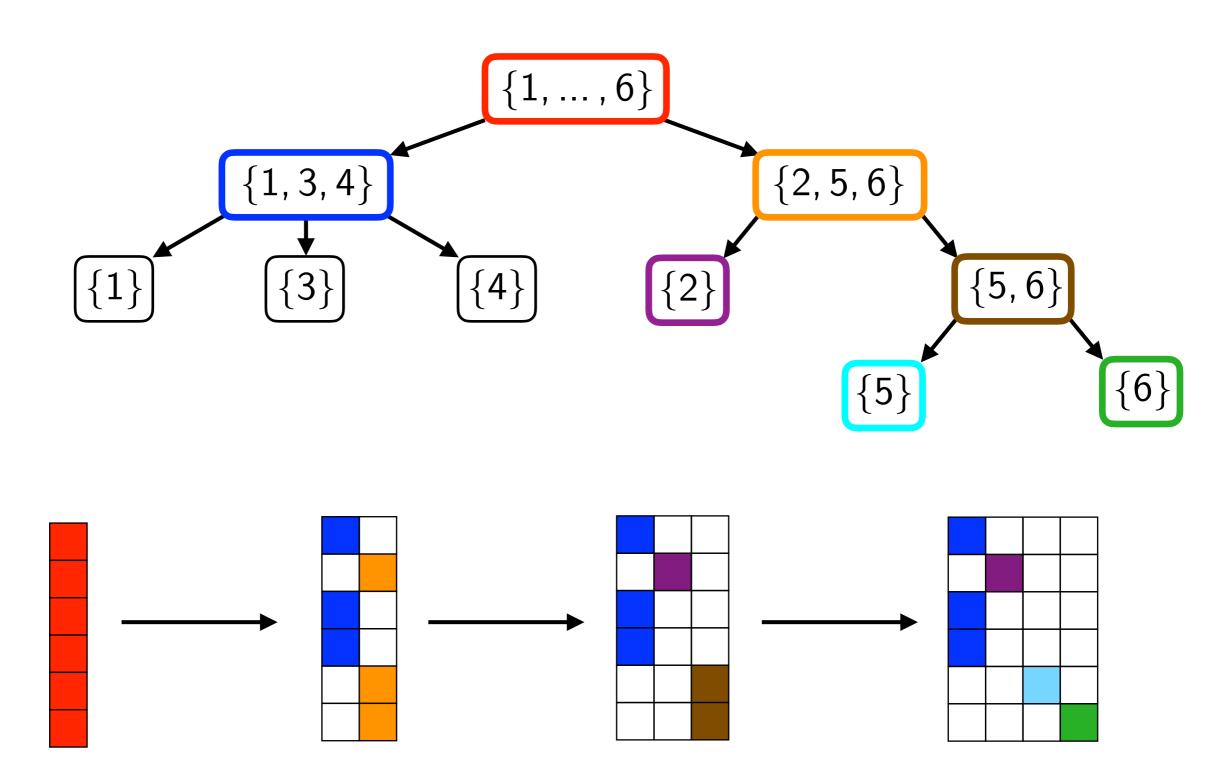












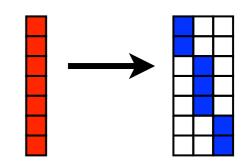
Nonlinear model reduction Kevin Carlberg

Tree requirements

Theorem [C., 2015]

h-adaptivity generates a hierarchy of subspaces if:

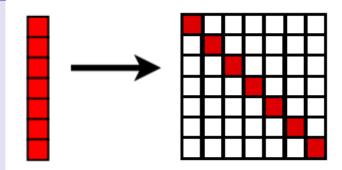
- 1. children have disjoint support, and
- 2. the union of the children elements is equal to the parent elements



Theorem [C., 2015]

h-adaptivity converges to the high-fidelity model if:

- 1. every element has a nonzero entry in >1 basis vector,
- 2. the root node includes all elements, and
- 3. each element has a leaf node.



Tree-construction algorithm

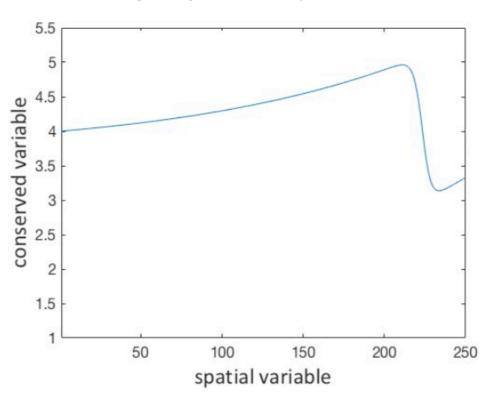
- Identifies hierarchy of correlated states via k-means clustering
- + Ensures theorem conditions are satisfied

Which vectors to split?

Dual-weighted-residual error estimation

Illustration: inviscid 1D Burgers' equation

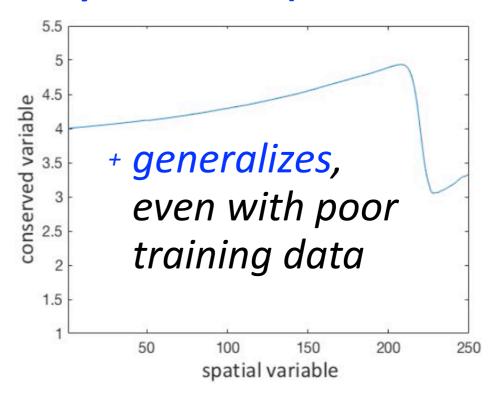
high-fidelity model



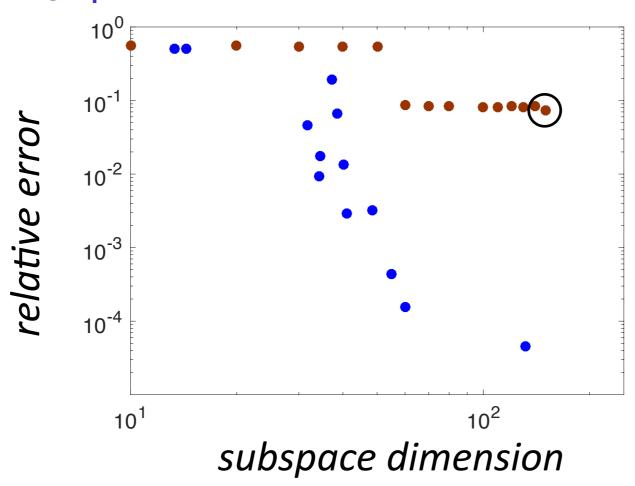
reduced-order model (dim 50)

5.5 9 4.5 3.5 2.5 1.5 50 100 150 200 250 spatial variable

h-adaptive ROM (mean dim 48.5)



h-adaptivity provides an accurate, low-dim subspace

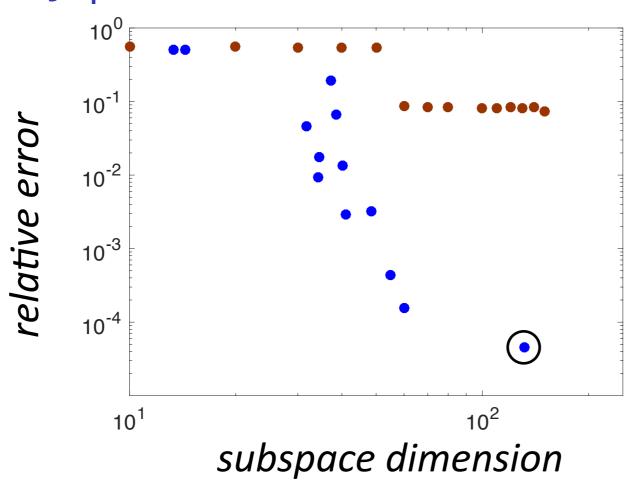


- reduced-order models
- h-adaptive ROMs

Reduced-order models

- minimum error 7.5%
- cannot overcome insufficient training data

h-adaptivity provides an accurate, low-dim subspace



- reduced-order models
- h-adaptive ROMs

Reduced-order models

- minimum error 7.5%
- cannot overcome insufficient training data

h-adaptive ROMs

- + minimum error <0.01% with lower subspace dimension
- + generalizes if insufficient training data
- + can satisfy any prescribed error tolerance

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- * accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * Structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [c., 2015]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{G}^{n}\|_{2} \leq \frac{1}{h} \|\mathbf{r}_{G}^{n}(\mathbf{\Phi}\hat{\mathbf{x}}_{G}^{n})\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\alpha_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{G}^{n-\ell}\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{LSPG}^{n}\|_{2} \leq \frac{1}{h} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{LSPG}^{n}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2} + \frac{1}{h} \sum_{\ell=1}^{k} |\alpha_{\ell}| \|\mathbf{x}^{n-\ell} - \mathbf{\Phi}\hat{\mathbf{x}}_{LSPG}^{n-\ell}\|_{2}$$

Can we use these error bounds for error estimation?

Nonlinear model reduction Kevin Carlberg

61

Discrete-time error bound

Theorem: error bound for BDF integrators [C., Barone, Antil, 2017]

If the following conditions hold:

- 1. $\mathbf{f}(\cdot;t)$ is Lipschitz continuous with Lipschitz constant κ
- 2. The time step Δt is small enough such that $0 < h := |\alpha_0| |\beta_0| \kappa \Delta t$,

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{G}^{n}\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1,...,N\}} \|\mathbf{r}_{G}^{j}(\mathbf{\Phi}\hat{\mathbf{x}}_{G}^{j})\|_{2}$$

$$\|\mathbf{x}^{n} - \mathbf{\Phi}\hat{\mathbf{x}}_{LSPG}^{n}\|_{2} \leq \frac{\gamma_{1}(\gamma_{2})^{n} \exp(\gamma_{3}t^{n})}{\gamma_{4} + \gamma_{5}\Delta t} \max_{j \in \{1,...,N\}} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{LSPG}^{j}(\mathbf{\Phi}\hat{\mathbf{v}})\|_{2}$$

Can we use these error bounds for error estimation?

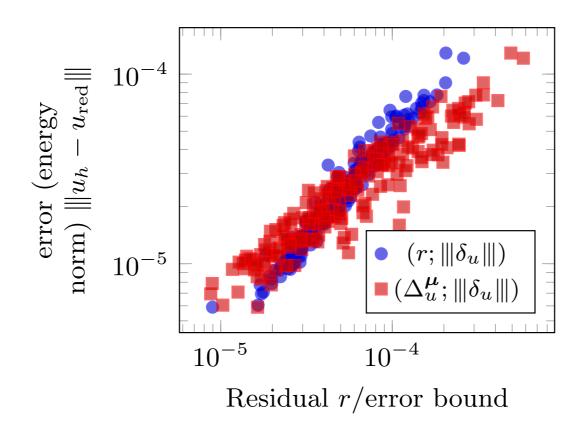
- grow exponentially in time
- deterministic: not amenable to uncertainty quantification

Nonlinear model reduction Kevin Carlberg

61

Main idea

Observation: residual-based quantities are informative of the error



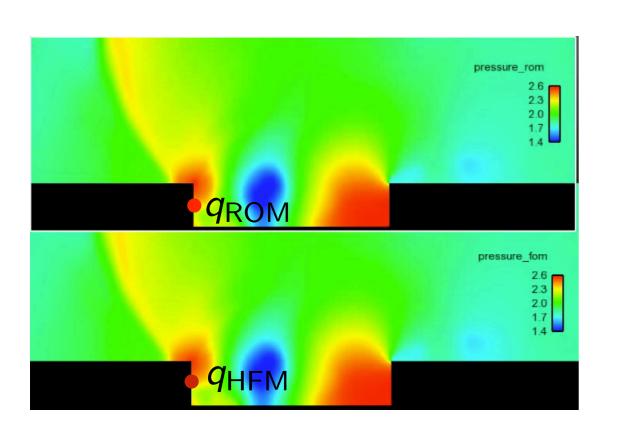
ML perspective: these are good features for predicting the error

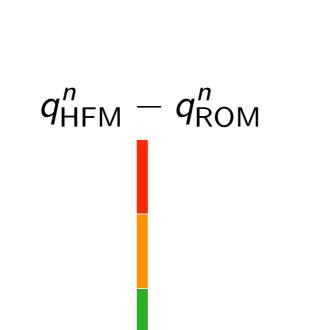
Idea: Apply machine learning regression to generate a mapping from residual-based quantities to a random variable for the error

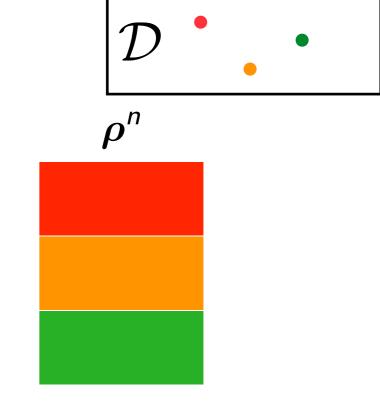
Machine-learning error models [Freno and C., 2019]

Training and machine learning: error modeling

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. *Reduction:* predict reduced-order-model error for $\mu \in \mathcal{D}_{\mathsf{query}} \setminus \mathcal{D}_{\mathsf{training}}$







Kevin Carlberg

- randomly divide data into (1) training data and (2) testing data
- ' construct regression-function model $ilde{f}$ via cross validation on ${f training\ data}$
- construct noise model $\tilde{\epsilon}$ from sample variance on **test data**

Reduction

- 1. Training: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\mathsf{training}}$
- 2. Machine learning: Construct regression model
- 3. Reduction: predict reduced-order-model error for $\mu \in \mathcal{D}_{query} \setminus \mathcal{D}_{training}$

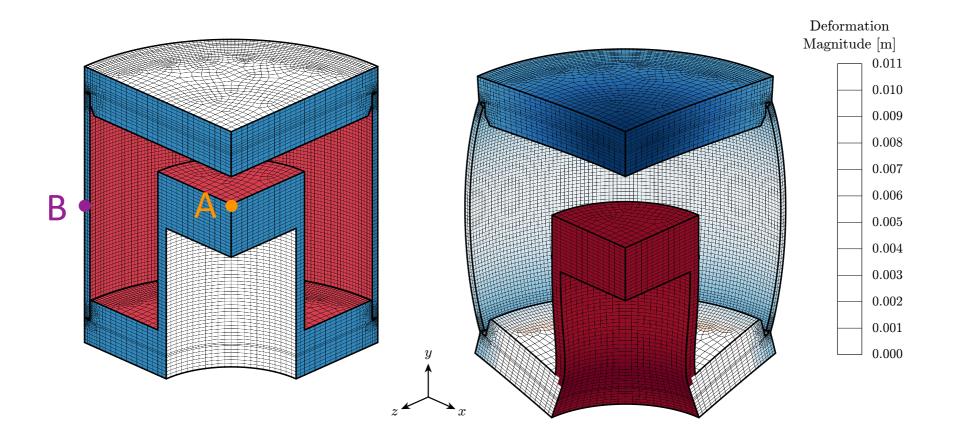
regression model
$$ilde{\delta}^{\sf n}(m{\mu}) = ilde{f}(m{
ho}^{\sf n}(m{\mu})) + ilde{\epsilon}(m{
ho}^{\sf n}(m{\mu}))$$

$$ilde{m{q}_{\mathsf{HFM}}^n(m{\mu})} = extstyle{m{q}_{\mathsf{ROM}}^n(m{\mu})} + ilde{m{\delta}^n(m{\mu})}$$
 stochastic deterministic stochastic

* Statistical model of high-fidelity-model output

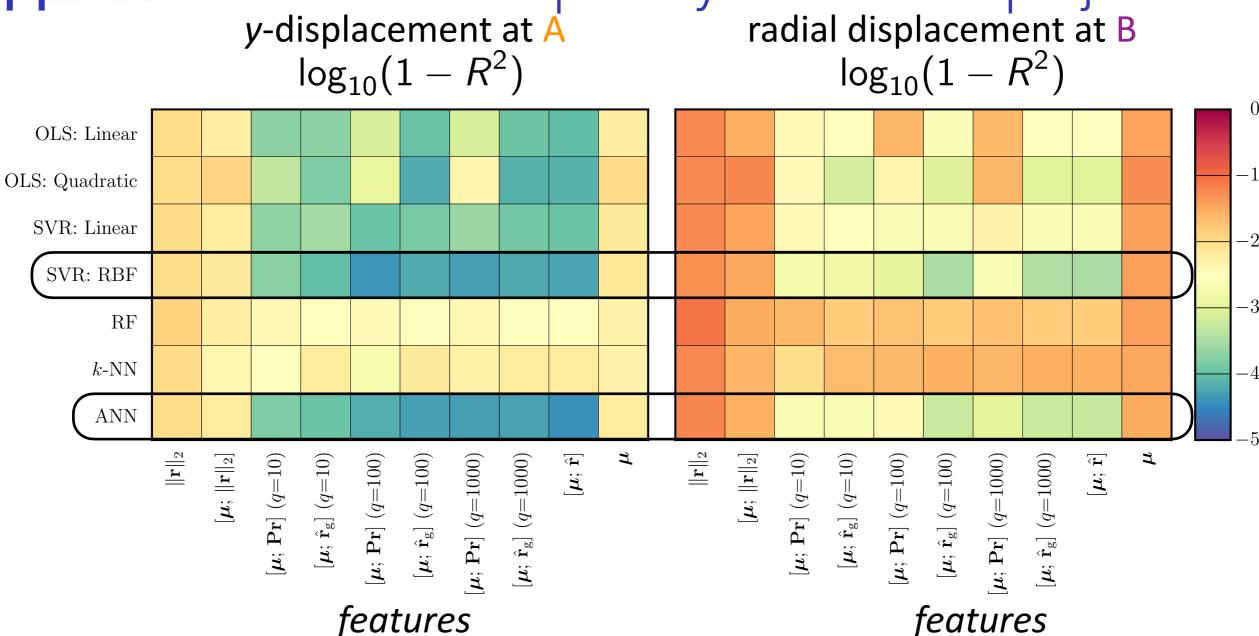
Use rigorous error analysis to engineer features ρ^n

Application: Predictive capability assessment project



- high-fidelity model dimension: 2.8×10^5
- reduced-order model dimensions: 1, ..., 5
- $ightharpoonup inputs~\mu$: elastic modulus, Poisson ratio, applied pressure
- quantities of interest: y-displacement at A, radial displacement at B
- training data: 150 training examples, 150 testing examples

Application: Predictive capability assessment project

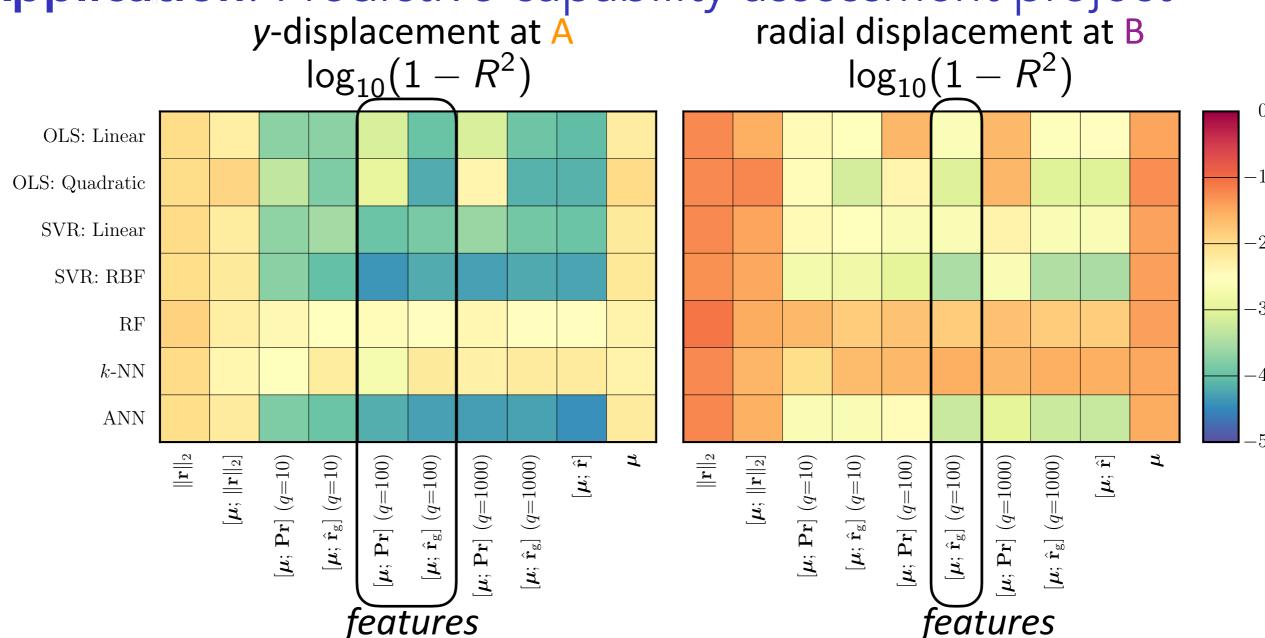


+ regression methods: neural networks and SVR: RBF most accurate

Nonlinear model reduction

Kevin Carlberg

regression methods



- + regression methods: neural networks and SVR: RBF most accurate
- + features: only 100 residual samples needed for good accuracy

Nonlinear model reduction Kevin Carlberg

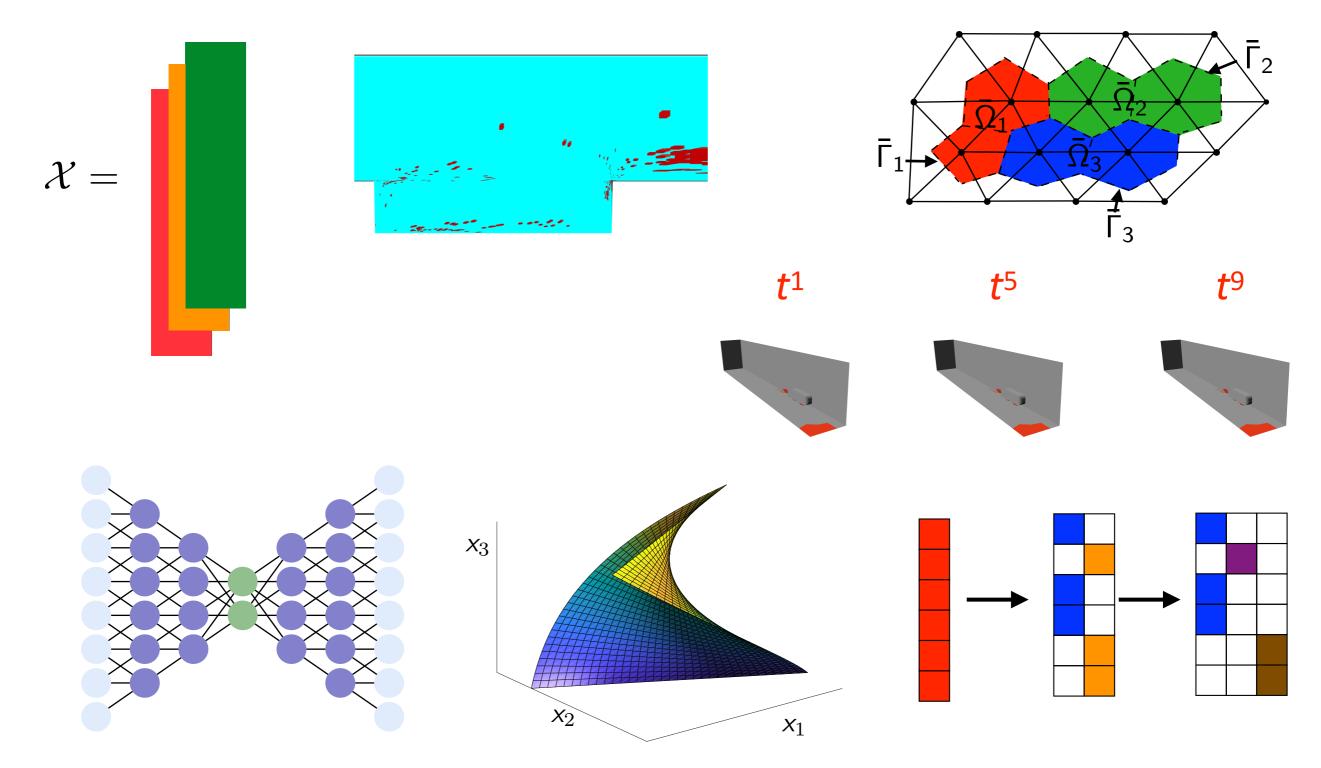
66

Our research

Accurate, low-cost, structure-preserving, generalizable, certified nonlinear model reduction

- accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- Ow cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- low cost: space—time LSPG projection
 [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2019]
- * structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2018]
- generalization: projection onto nonlinear manifolds [Lee, C., 2018]
- generalization: h-adaptivity [C., 2015; Etter and C., 2019]
- certification: machine learning error models
 [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2019; Pagani, Manzoni, C., 2019; Parish and C., 2019]

Questions?



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525