
Applied Convex Models

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

1

Image in-painting (inpaint.ipynb)

Image in-painting (inpaint.ipynb) 2

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Image in-painting (inpaint.ipynb) 3

Image in-painting

Original Corrupted

Image in-painting (inpaint.ipynb) 4

Image in-painting

guess pixel values in obscured/corrupted parts of image
I decision variable x ∈ Rm×n×3

I xi,j ∈ [0, 1]3 gives RGB values of pixel (i, j)
I many pixels missing
I K: set of known pixel IDs, whose values given by data y ∈ Rm×n×3

total variation in-painting: choose pixel values xi,j ∈ R3 to minimize

TV(x) =
∑
i,j

∥∥∥∥∥
[
xi+1,j − xi,j

xi,j+1 − xi,j

]∥∥∥∥∥
2

that is, for each pixel, minimize distance to neighbors below and to the right, subject to
known pixel values

Image in-painting (inpaint.ipynb) 5

In-painting: Convex model

minimize TV(x)
subject to xi,j = yi,j if (i, j) ∈ K

Image in-painting (inpaint.ipynb) 6

In-painting: Code example

K[i, j] == 1 if pixel value known, 0 if unknown
from cvxpy import *
variables = []
constr = []
for i in range(3):

x = Variable(rows, cols)
variables += [x]
constr += [multiply(K, x - y[:,:,i]) == 0]

prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)

Image in-painting (inpaint.ipynb) 7

In-painting: 600× 512 color image; about 900k variables
Original Corrupted

Image in-painting (inpaint.ipynb) 8

In-painting
Original Recovered

Image in-painting (inpaint.ipynb) 9

In-painting (80% of pixels removed)
Original Corrupted

Image in-painting (inpaint.ipynb) 10

In-painting (80% of pixels removed)
Original Recovered

Image in-painting (inpaint.ipynb) 11

Kalman filtering (robust_kalman.ipynb)

Kalman filtering (robust_kalman.ipynb) 12

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Kalman filtering (robust_kalman.ipynb) 13

Vehicle tracking

4 2 0 2 4 6 8 10 12 14
5

0

5

10

15

20
True

4 2 0 2 4 6 8 10 12 14

Observed

Kalman filtering (robust_kalman.ipynb) 14

Kalman filtering

I estimate vehicle path from noisy position measurements (with outliers)
I dynamic model of vehicle state xt:

xt+1 = Axt +Bwt, yt = Cxt + vt

I Given:
I A, B: matrices characterizing time-discrete dynamics
I C: output-measurement matrix
I yt, t = 1, . . . , N : position measurements over N time steps

I Unknown:
I xt: vehicle state (position, velocity): to be estimated
I wt: unknown drive force on vehicle
I vt: noise

Kalman filtering (robust_kalman.ipynb) 15

Kalman filter and Robust Kalman filter
Kalman filter:
I estimate xt by solving

minimize
∑N

t=1
(
‖wt‖22 + γ‖vt‖22

)
subject to xt+1 = Axt +Bwt, yt = Cxt + vt, t = 1, . . . , N

I can interpret wt and vt as the residuals of the equations
I a least-squares problem; maximum likelihood if assuming wt, vt Gaussian

Robust Kalman filter:
I to handle outliers in vt, replace square cost with Huber cost φ

minimize
∑N

t=1
(
‖wt‖22 + γφ(vt)

)
subject to xt+1 = Axt +Bwt, yt = Cxt + vt, t = 1, . . . , N

I No longer least squares due to Huber cost
Kalman filtering (robust_kalman.ipynb) 16

Robust KF CVXPY code
from cvxpy import *
x = Variable(4,n+1)
w = Variable(2,n)
v = Variable(2,n)

obj = sum_squares(w)
obj += sum(huber(norm(v[:,t])) for t in range(n))
obj = Minimize(obj)
constr = []
for t in range(n):

constr += [x[:,t+1] == A*x[:,t] + B*w[:,t] ,
y[:,t] == C*x[:,t] + v[:,t]]

Problem(obj, constr).solve()
Kalman filtering (robust_kalman.ipynb) 17

Example

I N = 1000 time steps
I wt standard Gaussian
I vt standard Gaussian, except 30% are outliers with σ = 10

Kalman filtering (robust_kalman.ipynb) 18

Example

4 2 0 2 4 6 8 10 12 14
5

0

5

10

15

20
True

4 2 0 2 4 6 8 10 12 14

Observed

Kalman filtering (robust_kalman.ipynb) 19

Example

4 2 0 2 4 6 8 10 12 14
5

0

5

10

15

20
True

4 2 0 2 4 6 8 10 12 14

KF recovery

Kalman filtering (robust_kalman.ipynb) 20

Example

4 2 0 2 4 6 8 10 12 14
5

0

5

10

15

20
True

4 2 0 2 4 6 8 10 12 14

Robust KF recovery

Kalman filtering (robust_kalman.ipynb) 21

Portfolio optimization (portfolio_optimization.ipynb)

Portfolio optimization (portfolio_optimization.ipynb) 22

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Portfolio optimization (portfolio_optimization.ipynb) 23

Portfolio allocation vector

I invest fraction wi in asset i for i = 1, . . . , n
I w ∈ Rn is portfolio allocation vector
I 1Tw = 1
I wi < 0 means short position in asset i (borrow shares and sell now; replace later)
I w ≥ 0 is a long only portfolio
I ‖w‖1 = 1Tw+ + 1Tw− is leverage (there are other definitions)

I smaller leverage = fewer investments (sparser)

Portfolio optimization (portfolio_optimization.ipynb) 24

Asset Returns

I investments held for one period
I initial prices pi > 0; end of period process p+

i > 0
I asset (fractional) returns ri = (p+

i − pi)/pi

I portfolio (fractional) return R =
∑

i riwi = rTw
I common model: r is a random variable, with mean E[r] = µ, covariance

E[(r − µ)(r − µ)T] = Σ
I so R is a random variable with E[R] = µTw, var[R] = wT Σw
I E[R] is (mean) return of portfolio
I var[R] = wT Σw is risk of portfolio
I Finance: high return, low risk (multiobjective)

Portfolio optimization (portfolio_optimization.ipynb) 25

Classical (Markowitz) portfolio optimization

minimize −µTw + γwT Σw
subject to 1Tw = 1, w ∈ W

I variable w ∈ Rn

I W is set of allowed portfolios
I common case W = Rn

+ (long only)
I γ > 0 is risk aversion parameter
I µTw − γwT Σw is risk-adjusted return
I varying γ gives (convex hull of) Pareto-optimal risk-return trade-off
I can also fix return and minimize risk, etc.
I To limit leverage use ‖w‖1 ≤ Lmax

Portfolio optimization (portfolio_optimization.ipynb) 26

Pareto front

I Pareto front shows Pareto-optimal allocations
I Red points show single-asset allocation points

Portfolio optimization (portfolio_optimization.ipynb) 27

Pareto front

Two Pareto-optimal portfolios:
I γ = 0.29: higher return, higher risk
I γ = 1.05: lower return, lower risk

Portfolio optimization (portfolio_optimization.ipynb) 28

Leverage

I Now, introduce a constraint on leverage:

minimize −µTw + γwT Σw
subject to 1Tw = 1, w ∈ W

‖w‖1 ≤ Lmax

Portfolio optimization (portfolio_optimization.ipynb) 29

Pareto curves for different values of Lmax:

I Larger values of Lmax are less restrictive and enable superior portfolios in terms of
risk and return

Portfolio optimization (portfolio_optimization.ipynb) 30

Leverage

I Now, introduce a constraint on risk:

minimize −µTw
subject to 1Tw = 1, w ∈ W

‖w‖1 ≤ Lmax
wT Σw ≤ 2

I Single objective

Portfolio optimization (portfolio_optimization.ipynb) 31

Portfolios for different values of Lmax:

I Smaller values of Lmax enforce sparsity and smaller variation in the resulting
portfolios (lower leverage)

Portfolio optimization (portfolio_optimization.ipynb) 32

Nonnegative matrix factorization
(nonneg_matrix_fact.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 33

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 34

Nonnegative matrix factorization

I goal: factor A ∈ Rm×n
+ such that

A ≈WH,

where W ∈ Rm×k
+ , H ∈ Rk×n

+ and k � n,m
I W , H give nonnegative low-rank approximation to A
I low-rank means data more interpretable as combination of just k features
I nonegativity may be natural to the data, e.g., no negative words in a document
I applications in recommendation systems, signal processing, clustering, computer

vision, natural language processing

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 35

NMF formulation

I many ways to formalize A ≈WH
I for given A and k, we’ll try to find W and H that solve

minimizeW,H ‖A−WH‖2F
subject to Wij ≥ 0

Hij ≥ 0

I ‖X‖F =
√∑

ij X
2
ij is the matrix Frobenius norm

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 36

Principal component analysis

I NMF can be thought of as a dimensionality reduction technique
I PCA is a related dimensionality reduction method, solving the problem

minimizeW,H ‖A−WH‖2F

for W ∈ Rm×k
+ , H ∈ Rk×n

+ , without nonnegativity constraint
I PCA has “analytical” solution via the singular value decomposition
I won’t go further into the interpretation of the models; focus on methods for

computing NMF instead

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 37

Biconvexity

I the NMF problem
minimizeW,H ‖A−WH‖2F
subject to Wij ≥ 0

Hij ≥ 0

is nonconvex due to the product WH
I however, the objective function is biconvex: convex in either W or H if we hold

the other fixed

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 38

Alternating minimization

biconvexity suggests the following algorithm:
I initialize W 0

I for k = 0, 1, 2, . . .
I

Hk+1 = argminH ‖A−W kH‖2F
subject to Hij ≥ 0

I
W k+1 = argminW ‖A−WHk+1‖2F

subject to Wij ≥ 0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 39

In CVXPY
for iter_num in range(1, 1+MAX_ITERS):

For odd iterations, treat Y constant, optimize over X.
if iter_num % 2 == 1:

X = cvx.Variable(k, n)
constraint = [X >= 0]

For even iterations, treat X constant, optimize over Y.
else:

Y = cvx.Variable(m, k)
constraint = [Y >= 0]

Solve the problem.
obj = cvx.Minimize(cvx.norm(A - Y*X, 'fro'))
prob = cvx.Problem(obj, constraint)
prob.solve(solver=cvx.SCS)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 40

NMF results in CVXPY

I Residual goes to zero

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 41

Discussion

I expression A−W kH is linear in variable H
I ‖A−W kH‖2F is exactly the least squares objective, but with matrix instead of

vector variable
I each subproblem is a convex nonnegative least squares problem
I no guarantee of global minimum, but we do get a local minimum
I due to biconvexity, the objective function decreases at each iteration, meaning that

the iteration converges

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 42

Extensions

sparse factors with `1 penalty

minimizeW,H ‖A−WH‖2F +
∑

ij (|Wij |+ |Hij |)
subject to Wij ≥ 0

Hij ≥ 0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 43

Extensions

matrix completion: only observe subet of entries Aij for (i, j) ∈ Ω
I use low-rank assumption to estimate missing entries

minimizeW,H,Z
∑

i,j∈Ω(Aij − Zij)2

subject to Z = WH
Wij ≥ 0
Hij ≥ 0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 44

Optimal advertising (optimal_advertising.ipynb)

Optimal advertising (optimal_advertising.ipynb) 45

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Optimal advertising (optimal_advertising.ipynb) 46

Ad display

I m advertisers/ads, i = 1, . . . ,m
I n time slots, t = 1, . . . , n
I Tt is total traffic in time slot t
I Dit ≥ 0 is number of ad i displayed in period t
I
∑

iDit ≤ Tt

I contracted minimum total displays:
∑

tDit ≥ ci

I goal: choose Dit

Optimal advertising (optimal_advertising.ipynb) 47

Clicks and revenue

I Cit is number of clicks on ad i in period t
I click model: Cit = PitDit

I Pit ∈ [0, 1]: fraction of ads i in period t that are clicked
I payment: Ri > 0 per click for ad i, up to budget Bi

I ad revenue
Si = min{Ri

∑
t

Cit, Bi}

is a concave function of D

Optimal advertising (optimal_advertising.ipynb) 48

Ad optimization

I choose displays to maximize revenue:

maximize
∑

i Si = min{Ri
∑

t PitDit, Bi}
subject to D ≥ 0, DT 1 ≤ T, D1 ≥ c

I variable is D ∈ Rm×n

I data are T , c, R, B, P
I constraint interpretation:

I D ≥ 0: non-negative number of each ad in each time period
I DT 1 ≤ T : cannot exceed total traffic in each time slot
I D1 ≥ c: cannot violate minimum number of contracted ad displays

Optimal advertising (optimal_advertising.ipynb) 49

Ad optimization example
I 24 hourly periods, 5 ads (A–E)
I total traffic Tt:

Optimal advertising (optimal_advertising.ipynb) 50

Example

I ad data:

Ad A B C D E

ci 61000 80000 61000 23000 64000
Ri 0.15 1.18 0.57 2.08 2.43
Bi 25000 12000 12000 11000 17000

I ci: minimum contracted amount for ad i
I Ri: payment per click for ad i
I Bi: maximum budget for ad i

Optimal advertising (optimal_advertising.ipynb) 51

Ad optimization CVXPY code

from cvxpy import *
D = Variable(m,n)
Si = [minimum(R[i]*P[i,:]*D[i,:].T, B[i]) for i in range(m)]
prob = Problem(Maximize(sum(Si)),

[D >= 0,
D.T*np.ones(m) <= T,
D*np.ones(n) >= c])

prob.solve()

Optimal advertising (optimal_advertising.ipynb) 52

Ad optimization results in CVXPY

Optimal advertising (optimal_advertising.ipynb) 53

Example

I ad revenue

Ad A B C D E

ci 61000 80000 61000 23000 64000
Ri 0.15 1.18 0.57 2.08 2.43
Bi 25000 12000 12000 11000 17000∑

tDit 61000 80000 148116 23000 167323
Si 182 12000 12000 11000 7760

I Only show minimum number of ad A; makes very little money
I Maximize the budget for ads B, C, and D

Optimal advertising (optimal_advertising.ipynb) 54

	Image in-painting (inpaint.ipynb)
	Kalman filtering (robust_kalman.ipynb)
	Portfolio optimization (portfolio_optimization.ipynb)
	Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)
	Optimal advertising (optimal_advertising.ipynb)

