Applied Convex Models

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Image in-painting (inpaint.ipynb)

Image in-painting (inpaint.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Image in-painting (inpaint.ipynb)

Image in-painting

(JO[OLS G [GMRISE WA mwn.u_ii o

Ga#G LIOJGRIIG noumnn:,: £G] T

QO[OL 117 E—W@EE i) E:_uaﬁmm 26
o i og ,

nﬁin:uﬂ—:. mna

Original

Image in-painting (inpaint.ipynb)

Image in-painting

guess pixel values in obscured/corrupted parts of image

» decision variable x ¢ R"*"*3

» 1, € [0,1]® gives RGB values of pixel (i, §)

P> many pixels missing

> K: set of known pixel IDs, whose values given by data y € R™*"*3

total variation in-painting: choose pixel values z; ; € R? to minimize

Titl,j = Tij
Tij+1 = Tij
that is, for each pixel, minimize distance to neighbors below and to the right, subject to

known pixel values

TV(z) =)

Z‘?j

2

Image in-painting (inpaint.ipynb)

In-painting: Convex model

minimize TV(z)
subject to x;; =y, ; if (i,j) € K

Image in-painting (inpaint.ipynb)

In-painting: Code example

Kl[i, 7] == 1 if pizel value known, 0 if unknown
from cvxpy import *
variables = []
constr = []
for i in range(3):
x = Variable(rows, cols)
variables += [x]
constr += [multiply(X, x - y[:,:,i]) == 0]

prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)

Image in-painting (inpaint.ipynb)

In-painting: 600 x 512 color image; about 900k variables

Original

qOJOLG 61T [erRISf u::.a wmnaii E
CeeG IOJGRLIC ncumnmﬁﬁ Ac] fjjmm

a.u—.u:ﬁ ﬁmh,.\au.mﬂ_” _u hﬁ_w:hﬁm b_m
dngr- e

L

BT

Image in-painting (inpaint.ipynb)

In-painting

Recovered

Original

Image in-painting (inpaint.ipynb)

In-painting (80% of pixels removed)
Original

Image in-painting (inpaint.ipynb)

10

In-painting (80% of pixels removed)
Original

Image in-painting (inpaint.ipynb)

Recovered

11

Kalman filtering (robust_kalman.ipynb)

Kalman filtering (robust_kalman.ipynb)

12

Outline

Kalman filtering (robust_kalman.ipynb)

Kalman filtering (robust_kalman.ipynb)

13

Vehicle tracking

20 : : :

(Al

4 -2 0 2 4 6 8 10 12

Kalman filtering (robust_kalman.ipynb)

14

Observed

14

14

Kalman filtering

> estimate vehicle path from noisy position measurements (with outliers)
» dynamic model of vehicle state xy:

Tiy1 = Az + Bwy, y = Cay + vy

> Given:

» A, B: matrices characterizing time-discrete dynamics

» (' output-measurement matrix

» 4y, t=1,...,N: position measurements over N time steps
» Unknown:

> x;: vehicle state (position, velocity): to be estimated

» w;: unknown drive force on vehicle

> ;. noise

Kalman filtering (robust_kalman.ipynb) 15

Kalman filter and Robust Kalman filter
Kalman filter:
P estimate z; by solving

minimize 3270 ([|well3 + ylloe3)
subject to xy41 = Az + Bwy, y,=Cxy+v,, t=1,....,N

» can interpret w; and v; as the residuals of the equations
P a least-squares problem; maximum likelihood if assuming w;y, vy Gaussian

Robust Kalman filter:

» to handle outliers in v, replace square cost with Huber cost ¢

minimize S ([lwil|3 + v (ve))
subject to xy41 = Az + Bwy, y,=Cxy+v, t=1,....,N

» No longer least squares due to Huber cost
Kalman filtering (robust_kalman.ipynb)

16

Robust KF CVXPY code

from cvxpy import *
x = Variable(4,n+1)
w = Variable(2,n)
v = Variable(2,n)

obj = sum_squares(w)
obj += sum(huber(norm(v[:,t])) for t in range(n))
obj = Minimize(obj)

constr = []
for t in range(n):
constr += [x[:,t+1] == A*x[:,t] + B*w[:,t] ,
yl:,t] == C*x[:,t] + v[:,t]]

Problem(obj, constr).solve()

Kalman filtering (robust_kalman.ipynb)

17

Example

> N = 1000 time steps
> w; standard Gaussian
> v; standard Gaussian, except 30% are outliers with ¢ = 10

Kalman filtering (robust_kalman.ipynb)

18

Example

20 : : :

(Al

4 -2 0 2 4 6 8 10 12

Kalman filtering (robust_kalman.ipynb)

14

Observed

14

19

Example

20

(Al

Kalman

22 0 2 4 6 8 10 12

filtering (robust_kalman.ipynb)

14

KF recovery

12

20

Example

20

10f

(Al

Kalman

22 0 2 4 6 8 10 12

filtering (robust_kalman.ipynb)

14

Robust KF recovery

-4

-2

10

12 14

21

Portfolio optimization (portfolio_optimization.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

22

Outline

Portfolio optimization (portfolio_optimization.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

23

Portfolio allocation vector

invest fraction w; in asset 7 fori =1,...,n
w € R™ is portfolio allocation vector
1Tw=1

w; < 0 means short position in asset i (borrow shares and sell now; replace later)
w > 0 is a long only portfolio

lw|y = 17wy +1Tw_ is leverage (there are other definitions)
» smaller leverage = fewer investments (sparser)

VVvyVvyVYyYVYY

Portfolio optimization (portfolio_optimization.ipynb)

24

Asset Returns

vVvyvyvyy

vvyyvyy

investments held for one period

initial prices p; > 0; end of period process p;r >0

asset (fractional) returns r; = (p;” — p;)/pi

portfolio (fractional) return R = 3", rjw; = rTw

common model: 7 is a random variable, with mean E[r| = p, covariance
E[(r — 1)(r — p)7] =

so R is a random variable with E[R] = u"w, var[R] = w! Sw

E[R] is (mean) return of portfolio

var|[R] = w! Yw is risk of portfolio

Finance: high return, low risk (multiobjective)

Portfolio optimization (portfolio_optimization.ipynb) 25

Classical (Markowitz) portfolio optimization

minimize —plw + yw! Zw
subject to 1Tw=1, weW

variable w € R"

W is set of allowed portfolios

common case W = R} (long only)

~ > 0 is risk aversion parameter

pwlw — ywT Sw is risk-adjusted return

varying -y gives (convex hull of) Pareto-optimal risk-return trade-off
can also fix return and minimize risk, etc.

To limit leverage use ||wl[; < LM

VVVVVYYVYYVYY

Portfolio optimization (portfolio_optimization.ipynb)

26

Pareto front

201

154

Return

104

05

05 10 15 20 25 30
Risk (standard deviation)

P> Pareto front shows Pareto-optimal allocations
P> Red points show single-asset allocation points

Portfolio optimization (portfolio_optimization.ipynb)

27

Pareto front

Return

Two Pareto-optimal portfolios:

> v =0.29: higher return, higher risk
> v = 1.05: lower return, lower risk

Portfolio optimization (portfolio_optimization.ipynb)

28

Leverage

> Now, introduce a constraint on leverage:
minimize —plw + yw? Sw

subjectto 1Tw=1, we W
”wH1 S Lmax

Portfolio optimization (portfolio_optimization.ipynb)

29

Pareto curves for different values of L.:

Risk (standard deviation)

> Larger values of L.y are less restrictive and enable superior portfolios in terms of

risk and return

Portfolio optimization (portfolio_optimization.ipynb) 30

Leverage

» Now, introduce a constraint on risk:

minimize —uTw

subject to 1Tw =1, we W
||w||1 < Liax
wlYw < 2

> Single objective

Portfolio optimization (portfolio_optimization.ipynb)

31

Portfolios for different values of L .:

104
- =1

04 mm L™ =2
- =4
056
044

024

[|
001
1
0.2 1
1 2 3 4 5 &

T8 & W

]

» Smaller values of L,y enforce sparsity and smaller variation in the resulting
portfolios (lower leverage)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization
(nonneg _matrix_fact.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

33

Outline

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

34

Nonnegative matrix factorization

> goal: factor A € R"*" such that
A~WH,

where W € R7** H € R¥" and k < n,m

W, H give nonnegative low-rank approximation to A

low-rank means data more interpretable as combination of just k features
nonegativity may be natural to the data, e.g., no negative words in a document
applications in recommendation systems, signal processing, clustering, computer
vision, natural language processing

vvyyvyy

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

35

NMF formulation

> many ways to formalize A =~ WH
» for given A and k, we'll try to find W and H that solve

minimizey, g HA - WHH%“
subject to Wi; >0
H;; >0

> || X][Fr= /2 X%- is the matrix Frobenius norm

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 36

Principal component analysis

» NMF can be thought of as a dimensionality reduction technique
» PCA is a related dimensionality reduction method, solving the problem

minimizey, g HA - WHH%“

for W € RTX’“, H e Rixn, without nonnegativity constraint

> PCA has “analytical” solution via the singular value decomposition

> won't go further into the interpretation of the models; focus on methods for
computing NMF instead

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

37

Biconvexity

» the NMF problem
minimizew,y |4 - WH|%
subject to Wi; >0
H;; >0
is nonconvex due to the product WH

P> however, the objective function is biconvex: convex in either W or H if we hold
the other fixed

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

38

Alternating minimization

biconvexity suggests the following algorithm:
> initialize WY
> for k=0,1,2,...
>
H*1 = argming ||A-WFH|%
subject to H;; >0

WL = argming, ||[A — WH|Z
subject to W;; >0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 39

In CVXPY

for iter_num in range(1l, 1+MAX_ITERS):
For odd iterations, treat Y constant, optimize over X.
if iter_num % 2 ==
X = cvx.Variable(k, n)
constraint = [X >= 0]
For even iterations, treat X constant, optimize over Y.
else:
Y = cvx.Variable(m, k)
constraint = [Y >= 0]

Solve the problem.

obj = cvx.Minimize(cvx.norm(A - Y*X, 'fro'))
prob = cvx.Problem(obj, constraint)
prob.solve(solver=cvx.SCS)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

NMF results in CVXPY

31

—

Residual Norm

0 10 20

[teration Number

P Residual goes to zero

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

30

41

Discussion

» expression A — W¥H is linear in variable H

> ||[A — W¥H||% is exactly the least squares objective, but with matrix instead of
vector variable

P each subproblem is a convex nonnegative least squares problem

no guarantee of global minimum, but we do get a local minimum

> due to biconvexity, the objective function decreases at each iteration, meaning that
the iteration converges

v

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 42

Extensions

sparse factors with ¢; penalty

minimizew,;; [|A — WHI|% + 3, ([Wis] + |Hijl)
subject to Wi; >0
Hi; >0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

43

Extensions

matrix completion: only observe subet of entries A;; for (i, j) €

P use low-rank assumption to estimate missing entries

minimizeW7H,Z Zi,jeQ(Aij — Zi')z
subject to Z=WH

Wij >0

Hij >0

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb) 44

Optimal advertising (optimal_advertising.ipynb)

Optimal advertising (optimal_advertising.ipynb)

45

Outline

Optimal advertising (optimal_advertising.ipynb)

Optimal advertising (optimal_advertising.ipynb)

46

Ad display

» m advertisers/ads, i =1,...,m

> ntimeslots, t=1,...,n

» T; is total traffic in time slot ¢

» D;; > 0 is number of ad ¢ displayed in period ¢
> 21 Dit S Tt

» contracted minimum total displays: >, Dit > ¢;
» goal: choose Dy

Optimal advertising (optimal_advertising.ipynb)

47

Clicks and revenue

C+ is number of clicks on ad ¢ in period ¢

click model: Cj; = Py Dy

P;; € [0,1]: fraction of ads 7 in period ¢ that are clicked
payment: R; > 0 per click for ad 4, up to budget B;

ad revenue

vVvyvyYVvYyYy

Si = mm{Rl Z C,;t, Bz}
t

is a concave function of D

Optimal advertising (optimal_advertising.ipynb)

48

Ad optimization

P choose displays to maximize revenue:

maximize >, S; = min{R; >, Py Dis, B;}
subjectto D >0, DT1<T, Dl1>c¢

» variable is D € R™*"
» dataareT,c, R, B, P
P constraint interpretation:
» D > 0: non-negative number of each ad in each time period
» DT1 < T: cannot exceed total traffic in each time slot
» D1 > ¢: cannot violate minimum number of contracted ad displays

Optimal advertising (optimal_advertising.ipynb) 49

Ad optimization example

» 24 hourly periods, 5 ads (A-E)
» total traffic 7}:

30000

25000

20000

Taffic

15000

10000 -

5000 L L
o 5 10
Optimal advertising (optimal_advertising.ipynb)

Hour

15

20

25

50

Example

> ad data:
Ad A B C D E
G 61000 80000 61000 23000 64000
R; 0.15 1.18 0.57 2.08 2.43
B; 25000 12000 12000 11000 17000

» ¢;: minimum contracted amount for ad ¢
> R;: payment per click for ad 4
> B,;: maximum budget for ad i

Optimal advertising (optimal_advertising.ipynb)

51

Ad optimization CVXPY code

from cvxpy import *
D = Variable(m,n)
Si = [minimum(R[i]*P[i,:]1*D[i,:].T, B[i]) for i in range(m)]
prob = Problem(Maximize(sum(Si)),
[D >= 0,
D.T*np.ones(m) <= T,
D*np.ones(n) >= c])
prob.solve()

Optimal advertising (optimal_advertising.ipynb)

52

Ad optimization results in CVXPY

012345678 91011121314151617181920212223

* I
° I

Optimal advertising (optimal_advertising.ipynb)

53

Example

» ad revenue

Ad A B C D E

ci 61000 80000 61000 23000 64000
R; 0.15 1.18 0.57 2.08 2.43
B; 25000 12000 12000 11000 17000
>t Dit 61000 80000 148116 23000 167323
Si 182 12000 12000 11000 7760

» Only show minimum number of ad A; makes very little money

» Maximize the budget for ads B, C, and D

Optimal advertising (optimal_advertising.ipynb)

54

	Image in-painting (inpaint.ipynb)
	Kalman filtering (robust_kalman.ipynb)
	Portfolio optimization (portfolio_optimization.ipynb)
	Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)
	Optimal advertising (optimal_advertising.ipynb)

