Applied Convex Models

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Image in-painting (inpaint.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Image in-painting (inpaint.ipynb)

Image in-painting

Corrupted

Image in-painting

guess pixel values in obscured/corrupted parts of image

- decision variable $x \in \mathbf{R}^{m \times n \times 3}$
- $x_{i, j} \in[0,1]^{3}$ gives RGB values of pixel (i, j)
- many pixels missing
- K : set of known pixel IDs, whose values given by data $y \in \mathbf{R}^{m \times n \times 3}$
total variation in-painting: choose pixel values $x_{i, j} \in \mathbf{R}^{3}$ to minimize

$$
\operatorname{TV}(x)=\sum_{i, j}\left\|\left[\begin{array}{l}
x_{i+1, j}-x_{i, j} \\
x_{i, j+1}-x_{i, j}
\end{array}\right]\right\|_{2}
$$

that is, for each pixel, minimize distance to neighbors below and to the right, subject to known pixel values

In-painting: Convex model

$$
\begin{array}{ll}
\operatorname{minimize} & \mathrm{TV}(x) \\
\text { subject to } & x_{i, j}=y_{i, j} \text { if }(i, j) \in K
\end{array}
$$

In-painting: Code example

```
# K[i, j] == 1 if pixel value known, O if unknown
from cvxpy import *
variables = []
constr = []
for i in range(3):
    x = Variable(rows, cols)
    variables += [x]
    constr += [multiply(K, x - y[:,:,i]) == 0]
prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)
```

In-painting: 600×512 color image; about 900 k variables

Corrupted

Image in-painting (inpaint.ipynb)

In-painting

Recovered

Image in-painting (inpaint.ipynb)

In-painting (80% of pixels removed)

Corrupted

Image in-painting (inpaint.ipynb)

In-painting (80% of pixels removed)

Recovered

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Kalman filtering (robust_kalman.ipynb)

Vehicle tracking

Observed

Kalman filtering (robust_kalman.ipynb)

Kalman filtering

- estimate vehicle path from noisy position measurements (with outliers)
- dynamic model of vehicle state x_{t} :

$$
x_{t+1}=A x_{t}+B w_{t}, \quad y_{t}=C x_{t}+v_{t}
$$

- Given:
- A, B : matrices characterizing time-discrete dynamics
- C : output-measurement matrix
- $y_{t}, t=1, \ldots, N$: position measurements over N time steps
- Unknown:
- x_{t} : vehicle state (position, velocity): to be estimated
- w_{t} : unknown drive force on vehicle
- v_{t} : noise

Kalman filter and Robust Kalman filter

Kalman filter:

- estimate x_{t} by solving

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{t=1}^{N}\left(\left\|w_{t}\right\|_{2}^{2}+\gamma\left\|v_{t}\right\|_{2}^{2}\right) \\
\text { subject to } & x_{t+1}=A x_{t}+B w_{t}, \quad y_{t}=C x_{t}+v_{t}, \quad t=1, \ldots, N
\end{array}
$$

- can interpret w_{t} and v_{t} as the residuals of the equations
- a least-squares problem; maximum likelihood if assuming w_{t}, v_{t} Gaussian

Robust Kalman filter:

- to handle outliers in v_{t}, replace square cost with Huber cost ϕ

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{t=1}^{N}\left(\left\|w_{t}\right\|_{2}^{2}+\gamma \phi\left(v_{t}\right)\right) \\
\text { subject to } & x_{t+1}=A x_{t}+B w_{t}, \quad y_{t}=C x_{t}+v_{t}, \quad t=1, \ldots, N
\end{array}
$$

- No longer least squares due to Huber cost

Robust KF CVXPY code

```
    from cvxpy import *
    x = Variable(4,n+1)
    w = Variable(2,n)
    v = Variable(2,n)
    obj = sum_squares(w)
    obj += sum(huber(norm(v[:,t])) for t in range(n))
    obj = Minimize(obj)
    constr = []
    for t in range(n):
    constr += [ x[:,t+1] == A*x[:,t] + B*w[:,t] ,
        y[:,t] == C*x[:,t] + v[:,t] ]
```

 Problem(obj, constr).solve()
 Kalman filtering (robust_kalman.ipynb)

Example

- $N=1000$ time steps
- w_{t} standard Gaussian
- v_{t} standard Gaussian, except 30% are outliers with $\sigma=10$

Example

Observed

Kalman filtering (robust_kalman.ipynb)

Example

Kalman filtering (robust_kalman.ipynb)

Example

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Portfolio allocation vector

- invest fraction w_{i} in asset i for $i=1, \ldots, n$
- $w \in \mathbf{R}^{n}$ is portfolio allocation vector
- $\mathbf{1}^{T} w=1$
- $w_{i}<0$ means short position in asset i (borrow shares and sell now; replace later)
- $w \geq 0$ is a long only portfolio
- $\|w\|_{1}=\mathbf{1}^{T} w_{+}+\mathbf{1}^{T} w_{-}$is leverage (there are other definitions)
- smaller leverage $=$ fewer investments (sparser)

Asset Returns

- investments held for one period
- initial prices $p_{i}>0$; end of period process $p_{i}^{+}>0$
- asset (fractional) returns $r_{i}=\left(p_{i}^{+}-p_{i}\right) / p_{i}$
- portfolio (fractional) return $R=\sum_{i} r_{i} w_{i}=r^{T} w$
- common model: r is a random variable, with mean $\mathbf{E}[r]=\mu$, covariance $\mathbf{E}\left[(r-\mu)(r-\mu)^{T}\right]=\Sigma$
- so R is a random variable with $\mathbf{E}[R]=\mu^{T} w, \operatorname{var}[R]=w^{T} \Sigma w$
- $\mathbf{E}[R]$ is (mean) return of portfolio
- $\operatorname{var}[R]=w^{T} \Sigma w$ is risk of portfolio
- Finance: high return, low risk (multiobjective)

Classical (Markowitz) portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} w+\gamma w^{T} \Sigma w \\
\text { subject to } & \mathbf{1}^{T} w=1, w \in \mathcal{W}
\end{array}
$$

- variable $w \in \mathbf{R}^{n}$
- \mathcal{W} is set of allowed portfolios
- common case $\mathcal{W}=\mathbf{R}_{+}^{n}$ (long only)
- $\gamma>0$ is risk aversion parameter
- $\mu^{T} w-\gamma w^{T} \Sigma w$ is risk-adjusted return
- varying γ gives (convex hull of) Pareto-optimal risk-return trade-off
- can also fix return and minimize risk, etc.
- To limit leverage use $\|w\|_{1} \leq L^{\text {max }}$

Pareto front

- Pareto front shows Pareto-optimal allocations
- Red points show single-asset allocation points

Pareto front

Two Pareto-optimal portfolios:

- $\gamma=0.29$: higher return, higher risk
- $\gamma=1.05$: lower return, lower risk

Portfolio optimization (portfolio_optimization.ipynb)

Leverage

- Now, introduce a constraint on leverage:

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} w+\gamma w^{T} \Sigma w \\
\text { subject to } & \mathbf{1}^{T} w=1, w \in \mathcal{W} \\
& \|w\|_{1} \leq L_{\max }
\end{array}
$$

Pareto curves for different values of $L_{\max }$:

- Larger values of $L_{\max }$ are less restrictive and enable superior portfolios in terms of risk and return

Leverage

- Now, introduce a constraint on risk:

$$
\begin{array}{ll}
\operatorname{minimize} & -\mu^{T} w \\
\text { subject to } & \mathbf{1}^{T} w=1, w \in \mathcal{W} \\
& \|w\|_{1} \leq L_{\max } \\
& w^{T} \Sigma w \leq 2
\end{array}
$$

- Single objective

Portfolios for different values of $L_{\max }$:

- Smaller values of $L_{\text {max }}$ enforce sparsity and smaller variation in the resulting portfolios (lower leverage)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Nonnegative matrix factorization

- goal: factor $A \in \mathbf{R}_{+}^{m \times n}$ such that

$$
A \approx W H
$$

where $W \in \mathbf{R}_{+}^{m \times k}, H \in \mathbf{R}_{+}^{k \times n}$ and $k \ll n, m$

- W, H give nonnegative low-rank approximation to A
- low-rank means data more interpretable as combination of just k features
- nonegativity may be natural to the data, e.g., no negative words in a document
- applications in recommendation systems, signal processing, clustering, computer vision, natural language processing

NMF formulation

- many ways to formalize $A \approx W H$
- for given A and k, we'll try to find W and H that solve

$$
\begin{array}{ll}
\operatorname{minimize}_{W, H} & \|A-W H\|_{F}^{2} \\
\text { subject to } & W_{i j} \geq 0 \\
& H_{i j} \geq 0
\end{array}
$$

- $\|X\|_{F}=\sqrt{\sum_{i j} X_{i j}^{2}}$ is the matrix Frobenius norm

Principal component analysis

- NMF can be thought of as a dimensionality reduction technique
- PCA is a related dimensionality reduction method, solving the problem

$$
\operatorname{minimize}_{W, H} \quad\|A-W H\|_{F}^{2}
$$

for $W \in \mathbf{R}_{+}^{m \times k}, H \in \mathbf{R}_{+}^{k \times n}$, without nonnegativity constraint

- PCA has "analytical" solution via the singular value decomposition
- won't go further into the interpretation of the models; focus on methods for computing NMF instead

Biconvexity

- the NMF problem

$$
\begin{array}{ll}
\operatorname{minimize}_{W, H} & \|A-W H\|_{F}^{2} \\
\text { subject to } & W_{i j} \geq 0 \\
& H_{i j} \geq 0
\end{array}
$$

is nonconvex due to the product $W H$

- however, the objective function is biconvex: convex in either W or H if we hold the other fixed

Alternating minimization

biconvexity suggests the following algorithm:

- initialize W^{0}
- for $k=0,1,2, \ldots$

$$
\begin{array}{cll}
H^{k+1}= & \underset{\text { subject to }}{\operatorname{argmin}_{H}} \quad\left\|A-W^{k} H\right\|_{F}^{2} \\
& \\
W^{k+1}= & \underset{\text { subject to }}{\operatorname{argmin}_{W}}\left\|A-W H^{k+1}\right\|_{F}^{2} \\
& \| 0
\end{array}
$$

In CVXPY

for iter_num in range(1, 1+MAX_ITERS):
\# For odd iterations, treat Y constant, optimize over X.
if iter_num \% 2 == 1:
$\mathrm{X}=\mathrm{cvx} . \operatorname{Variable}(\mathrm{k}, \mathrm{n})$
constraint $=[\mathrm{X}>=0]$
\# For even iterations, treat X constant, optimize over Y. else:

$$
\begin{aligned}
& Y=c v x . V a r i a b l e(m, k) \\
& \text { constraint }=[Y>=0]
\end{aligned}
$$

\# Solve the problem.
obj = cvx.Minimize(cvx.norm(A - Y*X, 'fro'))
prob $=$ cvx.Problem(obj, constraint)
prob.solve(solver=cvx.SCS)
Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

NMF results in CVXPY

- Residual goes to zero

Discussion

- expression $A-W^{k} H$ is linear in variable H
- $\left\|A-W^{k} H\right\|_{F}^{2}$ is exactly the least squares objective, but with matrix instead of vector variable
- each subproblem is a convex nonnegative least squares problem
- no guarantee of global minimum, but we do get a local minimum
- due to biconvexity, the objective function decreases at each iteration, meaning that the iteration converges

Extensions

sparse factors with ℓ_{1} penalty

$$
\begin{array}{ll}
\operatorname{minimize}_{W, H} & \|A-W H\|_{F}^{2}+\sum_{i j}\left(\left|W_{i j}\right|+\left|H_{i j}\right|\right) \\
\text { subject to } & W_{i j} \geq 0 \\
& H_{i j} \geq 0
\end{array}
$$

Extensions

matrix completion: only observe subet of entries $A_{i j}$ for $(i, j) \in \Omega$

- use low-rank assumption to estimate missing entries

$$
\begin{array}{ll}
\operatorname{minimize}_{W, H, Z} & \sum_{i, j \in \Omega}\left(A_{i j}-Z_{i j}\right)^{2} \\
\text { subject to } & Z=W H \\
& W_{i j} \geq 0 \\
& H_{i j} \geq 0
\end{array}
$$

Optimal advertising (optimal_advertising.ipynb)

Outline

> Image in-painting (inpaint.ipynb)

> Kalman filtering (robust_kalman.ipynb)

> Portfolio optimization (portfolio_optimization.ipynb)

> Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Ad display

- m advertisers/ads, $i=1, \ldots, m$
- n time slots, $t=1, \ldots, n$
- T_{t} is total traffic in time slot t
- $D_{i t} \geq 0$ is number of ad i displayed in period t
- $\sum_{i} D_{i t} \leq T_{t}$
- contracted minimum total displays: $\sum_{t} D_{i t} \geq c_{i}$
- goal: choose $D_{i t}$

Clicks and revenue

- $C_{i t}$ is number of clicks on ad i in period t
- click model: $C_{i t}=P_{i t} D_{i t}$
- $P_{i t} \in[0,1]$: fraction of ads i in period t that are clicked
- payment: $R_{i}>0$ per click for ad i, up to budget B_{i}
- ad revenue

$$
S_{i}=\min \left\{R_{i} \sum_{t} C_{i t}, B_{i}\right\}
$$

is a concave function of D

Ad optimization

- choose displays to maximize revenue:

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i} S_{i}=\min \left\{R_{i} \sum_{t} P_{i t} D_{i t}, B_{i}\right\} \\
\text { subject to } & D \geq 0, \quad D^{T} \mathbf{1} \leq T, \quad D \mathbf{1} \geq c
\end{array}
$$

- variable is $D \in \mathbf{R}^{m \times n}$
- data are T, c, R, B, P
- constraint interpretation:
- $D \geq 0$: non-negative number of each ad in each time period
- $D^{T} \mathbf{1} \leq T$: cannot exceed total traffic in each time slot
- $D \mathbf{1} \geq c$: cannot violate minimum number of contracted ad displays

Ad optimization example

- 24 hourly periods, 5 ads (A-E)
- total traffic T_{t} :

Optimal advertising (optimal_advertising.ipynb) Hour

Example

- ad data:

Ad	A	B	C	D	E
c_{i}	61000	80000	61000	23000	64000
R_{i}	0.15	1.18	0.57	2.08	2.43
B_{i}	25000	12000	12000	11000	17000

- c_{i} : minimum contracted amount for ad i
- R_{i} : payment per click for ad i
- B_{i} : maximum budget for ad i

Ad optimization CVXPY code

```
from cvxpy import *
D = Variable(m,n)
Si = [minimum(R[i]*P[i,:]*D[i,:].T, B[i]) for i in range(m)]
prob = Problem(Maximize(sum(Si)),
    [D >= 0,
    D.T*np.ones(m) <= T,
    D*np.ones(n) >= c])
prob.solve()
```


Ad optimization results in CVXPY

Example

- ad revenue

Ad	A	B	C	D	E
c_{i}	61000	80000	61000	23000	64000
R_{i}	0.15	1.18	0.57	2.08	2.43
B_{i}	25000	12000	12000	11000	17000
$\sum_{t} D_{i t}$	61000	80000	148116	23000	167323
S_{i}	182	12000	12000	11000	7760

- Only show minimum number of ad A; makes very little money
- Maximize the budget for ads B, C, and D

