Applied Convex Models

Nick Henderson, AJ Friend (Stanford University) Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Image in-painting (inpaint.ipynb)

Outline

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Image in-painting

Image in-painting

guess pixel values in obscured/corrupted parts of image

- **•** decision variable $x \in \mathbf{R}^{m \times n \times 3}$
- $x_{i,j} \in [0,1]^3$ gives RGB values of pixel (i,j)
- many pixels missing
- ▶ K: set of known pixel IDs, whose values given by **data** $y \in \mathbf{R}^{m \times n \times 3}$

total variation in-painting: choose pixel values $x_{i,j} \in \mathbf{R}^3$ to minimize

$$\mathsf{TV}(x) = \sum_{i,j} \left\| \left[\begin{array}{c} x_{i+1,j} - x_{i,j} \\ x_{i,j+1} - x_{i,j} \end{array} \right] \right\|_2$$

that is, for each pixel, minimize distance to neighbors below and to the right, subject to known pixel values

In-painting: Convex model

 $\begin{array}{ll} \mbox{minimize} & \mbox{TV}(x) \\ \mbox{subject to} & x_{i,j} = y_{i,j} \mbox{ if } (i,j) \in K \end{array}$

In-painting: Code example

```
# K[i, j] == 1 if pixel value known, 0 if unknown
from cvxpy import *
variables = []
constr = []
for i in range(3):
    x = Variable(rows, cols)
    variables += [x]
    constr += [multiply(K, x - y[:,:,i]) == 0]
```

```
prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)
```

In-painting: 600×512 color image; about 900k variables

Original

In-painting

Recovered

In-painting (80% of pixels removed)

Original

In-painting (80% of pixels removed)

Original

Recovered

Kalman filtering (robust_kalman.ipynb)

Kalman filtering (robust_kalman.ipynb)

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

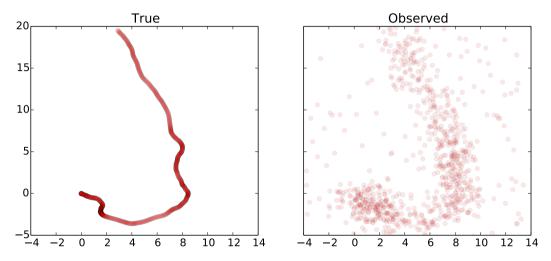
Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Kalman filtering (robust_kalman.ipynb)

Vehicle tracking



Kalman filtering (robust_kalman.ipynb)

Kalman filtering

- estimate vehicle path from noisy position measurements (with outliers)
- dynamic model of vehicle state x_t :

$$x_{t+1} = Ax_t + Bw_t, \quad y_t = Cx_t + v_t$$

Given:

- ► A, B: matrices characterizing time-discrete dynamics
- C: output-measurement matrix
- ▶ y_t , t = 1, ..., N: position measurements over N time steps

Unknown:

- x_t: vehicle state (position, velocity): to be estimated
- w_t : unknown drive force on vehicle
- \blacktriangleright v_t : noise

Kalman filter and Robust Kalman filter

Kalman filter:

• estimate x_t by solving

minimize
$$\sum_{t=1}^{N} (\|w_t\|_2^2 + \gamma \|v_t\|_2^2)$$

subject to $x_{t+1} = Ax_t + Bw_t, \quad y_t = Cx_t + v_t, \quad t = 1, \dots, N$

 \blacktriangleright can interpret w_t and v_t as the **residuals** of the equations

 \blacktriangleright a least-squares problem; maximum likelihood if assuming w_t, v_t Gaussian

Robust Kalman filter:

 \blacktriangleright to handle outliers in v_t , replace square cost with Huber cost ϕ

minimize
$$\sum_{t=1}^{N} (\|w_t\|_2^2 + \gamma \phi(v_t))$$

subject to $x_{t+1} = Ax_t + Bw_t, \quad y_t = Cx_t + v_t, \quad t = 1, ..., N$

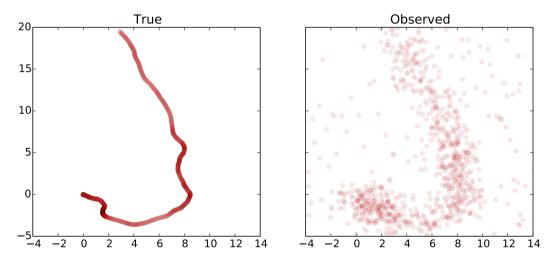
No longer least squares due to Huber cost Kalman filtering (robust_kalman.ipynb)

Robust KF CVXPY code

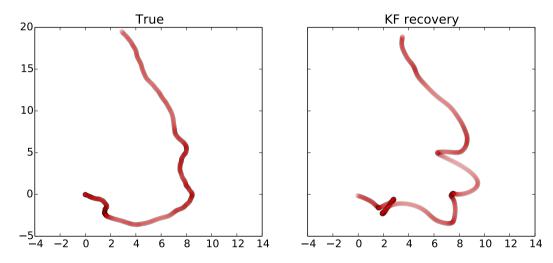
```
from cvxpy import *
x = Variable(4,n+1)
w = Variable(2,n)
v = Variable(2,n)
```

Problem(obj, constr).solve()
Kalman filtering (robust_kalman.ipynb)

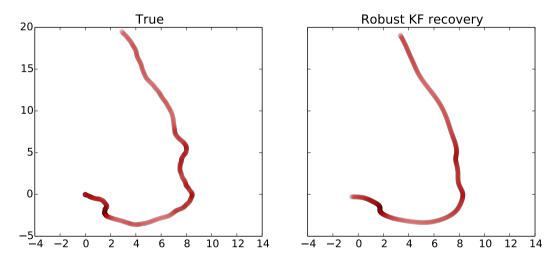
- ▶ N = 1000 time steps
- \blacktriangleright w_t standard Gaussian
- $\blacktriangleright~v_t$ standard Gaussian, except 30% are outliers with $\sigma=10$



Kalman filtering (robust_kalman.ipynb)



Kalman filtering (robust_kalman.ipynb)



Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Portfolio allocation vector

- invest fraction w_i in asset i for $i = 1, \ldots, n$
- $w \in \mathbf{R}^n$ is portfolio allocation vector
- $\blacktriangleright \ \mathbf{1}^T w = 1$
- \blacktriangleright $w_i < 0$ means short position in asset i (borrow shares and sell now; replace later)
- $\blacktriangleright \ w \ge 0 \text{ is a } \textit{long only portfolio}$
- $||w||_1 = \mathbf{1}^T w_+ + \mathbf{1}^T w_-$ is *leverage* (there are other definitions)
 - smaller leverage = fewer investments (sparser)

Asset Returns

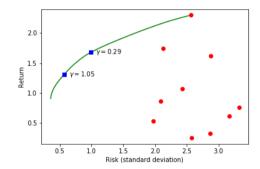
- investments held for one period
- ▶ initial prices $p_i > 0$; end of period process $p_i^+ > 0$
- ▶ asset (fractional) returns $r_i = (p_i^+ p_i)/p_i$
- ▶ portfolio (fractional) return $R = \sum_i r_i w_i = r^T w$
- ► common model: r is a random variable, with mean $\mathbf{E}[r] = \mu$, covariance $\mathbf{E}[(r \mu)(r \mu)^T] = \Sigma$
- \blacktriangleright so R is a random variable with $\mathbf{E}[R]=\mu^Tw$, $\mathbf{var}[R]=w^T\Sigma w$
- ▶ $\mathbf{E}[R]$ is (mean) return of portfolio
- $\mathbf{var}[R] = w^T \Sigma w$ is risk of portfolio
- Finance: high return, low risk (multiobjective)

Classical (Markowitz) portfolio optimization

$$\begin{array}{ll} \mbox{minimize} & -\mu^T w + \gamma w^T \Sigma w \\ \mbox{subject to} & \mathbf{1}^T w = 1, \; w \in \mathcal{W} \end{array}$$

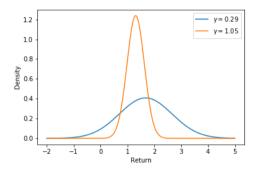
- \blacktriangleright variable $w \in \mathbf{R}^n$
- $\blacktriangleright \ \mathcal{W} \text{ is set of allowed portfolios}$
- common case $\mathcal{W} = \mathbf{R}^n_+$ (long only)
- $\blacktriangleright \ \gamma > 0$ is risk aversion parameter
- $\blacktriangleright \ \mu^T w \gamma w^T \Sigma w$ is risk-adjusted return
- \blacktriangleright varying γ gives (convex hull of) Pareto-optimal risk-return trade-off
- can also fix return and minimize risk, etc.
- ▶ To limit leverage use $||w||_1 \le L^{\max}$

Pareto front



- Pareto front shows Pareto-optimal allocations
- Red points show single-asset allocation points

Pareto front



Two Pareto-optimal portfolios:

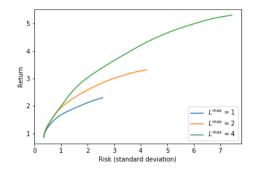
- ▶ $\gamma = 0.29$: higher return, higher risk
- ▶ $\gamma = 1.05$: lower return, lower risk

Now, introduce a constraint on leverage:

minimize
$$-\mu^T w + \gamma w^T \Sigma w$$

subject to $\mathbf{1}^T w = 1, \ w \in \mathcal{W}$
 $\|w\|_1 \le L_{\max}$

Pareto curves for different values of L_{\max} :



 \blacktriangleright Larger values of $L_{\rm max}$ are less restrictive and enable superior portfolios in terms of risk and return

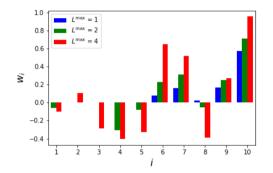
Leverage

Now, introduce a constraint on risk:

$$\begin{array}{ll} \text{minimize} & -\mu^T w \\ \text{subject to} & \mathbf{1}^T w = 1, \ w \in \mathcal{W} \\ & \|w\|_1 \leq L_{\max} \\ & w^T \Sigma w \leq 2 \end{array}$$

Single objective

Portfolios for different values of L_{\max} :



 Smaller values of L_{max} enforce sparsity and smaller variation in the resulting portfolios (lower leverage) Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Outline

lmage in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Nonnegative matrix factorization

b goal: factor $A \in \mathbf{R}^{m \times n}_+$ such that

 $A \approx WH$,

where $W \in \mathbf{R}^{m imes k}_+$, $H \in \mathbf{R}^{k imes n}_+$ and $k \ll n,m$

- \blacktriangleright W, H give nonnegative low-rank approximation to A
- Iow-rank means data more interpretable as combination of just k features
- nonegativity may be natural to the data, e.g., no negative words in a document
- applications in recommendation systems, signal processing, clustering, computer vision, natural language processing

NMF formulation

- ▶ many ways to formalize $A \approx WH$
- for given A and k, we'll try to find W and H that solve

$$\begin{array}{ll} \text{minimize}_{W,H} & \|A - WH\|_F^2 \\ \text{subject to} & W_{ij} \geq 0 \\ & H_{ij} \geq 0 \end{array}$$

•
$$||X||_F = \sqrt{\sum_{ij} X_{ij}^2}$$
 is the matrix **Frobenius norm**

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Principal component analysis

▶ NMF can be thought of as a dimensionality reduction technique

PCA is a related dimensionality reduction method, solving the problem

minimize_{W,H} $||A - WH||_F^2$

for $W \in \mathbf{R}^{m imes k}_+$, $H \in \mathbf{R}^{k imes n}_+$, without nonnegativity constraint

- > PCA has "analytical" solution via the singular value decomposition
- won't go further into the interpretation of the models; focus on methods for computing NMF instead

Biconvexity

▶ the NMF problem

$$\begin{array}{ll} \mbox{minimize}_{W,H} & \|A - WH\|_F^2 \\ \mbox{subject to} & W_{ij} \geq 0 \\ & H_{ij} \geq 0 \end{array}$$

is **nonconvex** due to the product $\boldsymbol{W}\boldsymbol{H}$

 \blacktriangleright however, the objective function is **biconvex**: convex in either W or H if we hold the other fixed

Alternating minimization

biconvexity suggests the following algorithm:

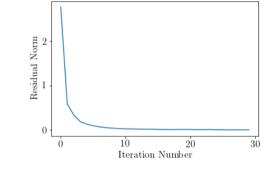
▶ initialize
$$W^0$$

▶ for $k = 0, 1, 2, ...$
 $H^{k+1} = \underset{\text{subject to}}{\operatorname{argmin}_H} \frac{\|A - W^k H\|_F^2}{\|H_i\|_F}$
 $W^{k+1} = \underset{\text{subject to}}{\operatorname{argmin}_W} \frac{\|A - WH^{k+1}\|_F^2}{\|H_i\|_F}$

In CVXPY

```
for iter_num in range(1, 1+MAX_ITERS):
    # For odd iterations, treat Y constant, optimize over X.
    if iter num % 2 == 1:
            X = cvx.Variable(k, n)
            constraint = [X \ge 0]
    # For even iterations, treat X constant, optimize over Y.
    else:
            Y = cvx.Variable(m. k)
            constraint = [Y \ge 0]
    # Solve the problem.
    obj = cvx.Minimize(cvx.norm(A - Y*X, 'fro'))
    prob = cvx.Problem(obj, constraint)
    prob.solve(solver=cvx.SCS)
```

NMF results in CVXPY



Residual goes to zero

Discussion

- expression $A W^k H$ is **linear** in variable H
- $\blacktriangleright \| A W^k H \|_F^2$ is exactly the least squares objective, but with matrix instead of vector variable
- each subproblem is a convex nonnegative least squares problem
- ▶ no guarantee of global minimum, but we do get a local minimum
- due to biconvexity, the objective function decreases at each iteration, meaning that the iteration converges

Extensions

sparse factors with ℓ_1 penalty

$$\begin{array}{ll} \mbox{minimize}_{W,H} & \|A - WH\|_F^2 + \sum_{ij} \left(|W_{ij}| + |H_{ij}|\right) \\ \mbox{subject to} & W_{ij} \geq 0 \\ & H_{ij} \geq 0 \end{array}$$

matrix completion: only observe subet of entries A_{ij} for $(i, j) \in \Omega$

use low-rank assumption to estimate missing entries

 $\begin{array}{ll} \mbox{minimize}_{W,H,Z} & \sum_{i,j\in\Omega} (A_{ij}-Z_{ij})^2 \\ \mbox{subject to} & Z=WH \\ & W_{ij}\geq 0 \\ & H_{ij}\geq 0 \end{array}$

Optimal advertising (optimal_advertising.ipynb)

Outline

lmage in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Portfolio optimization (portfolio_optimization.ipynb)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Optimal advertising (optimal_advertising.ipynb)

Ad display

- $\blacktriangleright~m$ advertisers/ads, $i=1,\ldots,m$
- n time slots, $t = 1, \ldots, n$
- \blacktriangleright T_t is total traffic in time slot t
- $D_{it} \ge 0$ is number of ad *i* displayed in period *t*
- $\blacktriangleright \sum_{i} D_{it} \leq T_t$
- ▶ contracted minimum total displays: $\sum_t D_{it} \ge c_i$
- ▶ goal: choose D_{it}

Clicks and revenue

- C_{it} is number of clicks on ad i in period t
- \blacktriangleright click model: $C_{it} = P_{it}D_{it}$
- ▶ $P_{it} \in [0,1]$: fraction of ads *i* in period *t* that are clicked
- ▶ payment: $R_i > 0$ per click for ad i, up to budget B_i

ad revenue

$$S_i = \min\{R_i \sum_t C_{it}, B_i\}$$

is a concave function of \boldsymbol{D}

Ad optimization

choose displays to maximize revenue:

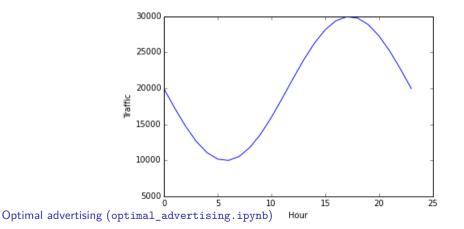
maximize
$$\sum_{i} S_{i} = \min\{R_{i} \sum_{t} P_{it} D_{it}, B_{i}\}$$

subject to $D \ge 0, \quad D^{T} \mathbf{1} \le T, \quad D\mathbf{1} \ge c$

- \blacktriangleright variable is $D \in \mathbf{R}^{m \times n}$
- \blacktriangleright data are *T*, *c*, *R*, *B*, *P*
- constraint interpretation:
 - ▶ $D \ge 0$: non-negative number of each ad in each time period
 - $D^T \mathbf{1} \leq T$: cannot exceed total traffic in each time slot
 - ▶ $D\mathbf{1} \ge c$: cannot violate minimum number of contracted ad displays

Ad optimization example

- ► 24 hourly periods, 5 ads (A–E)
- \blacktriangleright total traffic T_t :



Example

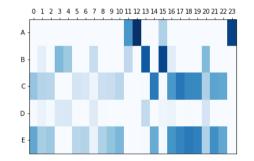
ad data:

Ad	А	В	С	D	E
c_i	61000	80000	61000	23000	64000
R_i	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000

- \triangleright c_i : minimum contracted amount for ad i
- \triangleright R_i : payment per click for ad *i*
- \blacktriangleright B_i : maximum budget for ad i

Ad optimization CVXPY code

Ad optimization results in CVXPY



Example

ad revenue

Ad	А	В	С	D	E
c_i	61000	80000	61000	23000	64000
R_i	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000
$\sum_t D_{it}$	61000	80000	148116	23000	167323
$\overline{S_i}$	182	12000	12000	11000	7760

- Only show minimum number of ad A; makes very little money
- Maximize the budget for ads B, C, and D