Convex Sets, Functions, and Problems

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Convex optimization

Theory, methods, and software for problems exihibiting the characteristics below

- Convexity:
- convex: local solutions are global
- non-convex: local solutions are not global
- Optimization-variable type:
- continuous: gradients facilitate computing the solution
- discrete: cannot compute gradients, NP-hard
- Constraints:
- unconstrained: simpler algorithms
- constrained: more complex algorithms; must consider feasibility
- Number of optimization variables:
- low-dimensional: can solve even without gradients
- high-dimensional : requires gradients to be solvable in practice

Set Notation

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Set Notation

- \mathbf{R}^{n} : set of n-dimensional real vectors
- $x \in C$: the point x is an element of set C
- $C \subseteq \mathbf{R}^{n}: C$ is a subset of \mathbf{R}^{n}, i.e., elements of C are n-vectors
- can describe set elements explicitly: $1 \in\{3$, "cat", 1$\}$
- set builder notation

$$
C=\{x \mid P(x)\}
$$

gives the points for which property $P(x)$ is true

- $\mathbf{R}_{+}^{n}=\left\{x \mid x_{i} \geq 0\right.$ for all $\left.i\right\}: n$-vectors with all nonnegative elements
- set intersection

$$
C=\bigcap_{i=1}^{N} C_{i}
$$

is the set of points which are simultaneously present in each C_{i}

Convexity

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Convex Sets

- $C \subseteq \mathbf{R}^{n}$ is convex if

$$
t x+(1-t) y \in C
$$

for any $x, y \in C$ and $0 \leq t \leq 1$

- that is, a set is convex if the line connecting any two points in the set is entirely inside the set

Convex Set

Nonconvex Set

Convex Functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom}(f)$ (the domain of f) is a convex set, and

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for any $x, y \in \operatorname{dom}(f)$ and $0 \leq t \leq 1$

- that is, convex functions are "bowl-shaped"; the line connecting any two points on the graph of the function stays above the graph
- f is concave if $-f$ is convex

Convex Function

Nonconvex Function

Convex Optimization Problem

- the optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

is convex if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and $C \subseteq \mathbf{R}^{n}$ is convex

- any concave optimization problem

$$
\begin{array}{ll}
\text { maximize } & g(x) \\
\text { subject to } & x \in C
\end{array}
$$

for concave g and convex C can be rewritten as a convex problem by minimizing $-g$ instead

Why Convexity?

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Why Convexity?

Minimizers

- all local minimizers are global minimizers

Algorithms

- intuitive algorithms work: "just go down" leads you to the global minimum
- can't get stuck close to local minimizers
- good software to solve convex optimization problems
- writing down a convex optimization problem is as good as having the (computational) solution

Expressiveness

- Convexity is a modeling constraint. Most problems are not convex
- However, convex optimization is very expressive, with many applications:
- machine learning
- engineering design
- finance
- signal processing
- Convex modeling tools like CVXPY (Python) make it easier to describe convex problems

Nonconvex Extensions

- even though most problems are not convex, convex optimization can still be useful
- approximate nonconvex problem with a convex model
- sequential convex programming (SCP) uses convex optimization as a subroutine in a nonconvex solver:
- locally approximate the problem as convex
- solve local model
- step to new point
- re-approximate and repeat

Convex Sets

Outline

```
Set Notation
Convexity
Why Convexity?
```

Convex Sets

Convex Functions

Convex Optimization Problems

Examples

- empty set: Ø
- set containing a single point: $\left\{x_{0}\right\}$ for $x_{0} \in \mathbf{R}^{n}$
$-\mathbf{R}^{n}$
- positive orthant: $\mathbf{R}_{+}^{n}=\left\{x \mid x_{i} \geq 0, \forall i\right\}$

Hyperplanes and Halfspaces

- hyperplane $C=\left\{x \mid a^{T} x=b\right\}$
- halfspace $C=\left\{x \mid a^{T} x \geq b\right\}$

Norm Balls

- a norm $\|\cdot\|: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is any function such that
- $\|x\| \geq 0$, and $\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
- unit norm ball, $\{x \mid\|x\| \leq 1\}$, is convex for any norm

Norm Ball Proof

- let $C=\{x \mid\|x\| \leq 1\}$
- to check convexity, assume $x, y \in C$, and $0 \leq t \leq 1$
- then,

$$
\begin{aligned}
\|t x+(1-t) y\| & \leq\|t x\|+\|(1-t) y\| \\
& =t\|x\|+(1-t)\|y\| \\
& \leq t+(1-t) \\
& =1
\end{aligned}
$$

- so $t x+(1-t) y \in C$, showing convexity
- this proof is typical for showing convexity

Intersection of Convex Sets

- the intersection of any number of convex sets is convex
- example: polyhedron is the intersection of halfspaces

- rewrite $\bigcap_{i=1}^{m}\left\{x \mid a_{i}^{T} x \leq b_{i}\right\}$ as $\{x \mid A x \leq b\}$, where

$$
A=\left[\begin{array}{c}
a_{1}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right], b=\left[\begin{array}{c}
b_{1}^{T} \\
\vdots \\
b_{m}^{T}
\end{array}\right]
$$

- $A x \leq b$ is componentwise or vector inequality

More Examples

- solutions to a system of linear equations $A x=b$ forms a convex set (intersection of hyperplanes)
- probability simplex, $C=\left\{x \mid x \geq 0,1^{T} x=1\right\}$ is convex (intersection of positive orthant and hyperplane)

CVXPY for Convex Intersection

- see set_examples.ipynb
- use CVXPY to solve the convex set intersection problem

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & x \in C_{1} \cup \cdots \cup C_{m}
\end{array}
$$

- set intersection given by list of constraints
- example: find a point in the intersection of two lines

$$
\begin{array}{r}
2 x+y=4 \\
-x+5 y=0
\end{array}
$$

CVXPY code

from cvxpy import *

```
x = Variable()
y = Variable()
```

obj = Minimize (0)
constr $=[2 * \mathrm{x}+\mathrm{y}==4$,
$-\mathrm{x}+5 * \mathrm{y}=0$]

Problem(obj, constr).solve()
print x.value, y.value
\rightarrow results in $x \approx 1.8, y \approx .36$

Diet Problem

- a classic problem in optimization is to meet the nutritional requirements of an army via various foods (with different nutritional benefits and prices) under cost constraints
- one soldier requires $1,2.1$, and 1.7 units of meat, vegetables, and grain, respectively, per day $(r=(1,2.1,1.7))$
- one unit of hamburgers has nutritional value $h=(.8, .4, .5)$ and costs $\$ 1$
- one unit of cheerios has nutritional value $c=(0, .3,2.0)$ and costs $\$ 0.25$
- prices $p=(1,0.25)$
- you have a budget of $\$ 130$ to buy hamburgers and cheerios for one day
- can you meet the dietary needs of 50 soldiers?

Diet Problem

- write as optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & p^{T} x \leq 130 \\
& x_{1} h+x_{2} c \geq 50 r \\
& x \geq 0
\end{array}
$$

with x giving units of hamburgers and cheerios

- or, with $A=[h, c]$,

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & p^{T} x \leq 130 \\
& A x \geq 50 r \\
& x \geq 0
\end{array}
$$

Diet Problem: CVXPY Code

```
x = Variable(2)
obj = Minimize(0)
constr = [x.T*p <= 130,
    h*x[0] + c*x[1] >= 50*r,
    x >= 0]
prob = Problem(obj, constr)
prob.solve(solver='SCS')
print x.value
    - non-unique solution }x\approx(62.83,266.57
```


Diet problem

- reformulate the problem to find the cheapest diet:

$$
\begin{array}{ll}
\operatorname{minimize} & p^{T} x \\
\text { subject to } & x_{1} h+x_{2} c \geq 50 r \\
& x \geq 0
\end{array}
$$

- with CVXPY, we feed the troops for $\$ 129.17$:

```
x = Variable(2)
obj = Minimize(x.T*p)
constr = [h*x[0] + c*x[1] >= 50*r,
    x >= 0]
Problem(obj, constr).solve()
```

Convex Functions

Outline

Set Notation
Convexity
Why Convexity?
Convex Sets
Convex Functions

Convex Optimization Problems

First-order condition

- for differentiable $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the gradient ∇f exists at each point in $\operatorname{dom}(f)$
- f is convex if and only if $\operatorname{dom}(f)$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \operatorname{dom}(f)$

- that is, the first-order Taylor approximation is a global underestimator of f

Second-order condition

- for twice differentiable $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the Hessian $\nabla^{2} f$, or second derivative matrix, exists at each point in $\operatorname{dom}(f)$
- f is convex if and only if for all $x \in \operatorname{dom}(f)$,

$$
\nabla^{2} f(x) \succeq 0
$$

- that is, the Hessian matrix must be positive semidefinite
- if $n=1$, simplifies to $f^{\prime \prime}(x) \geq 0$
- first- and second-order conditions generalize to non-differentiable convex functions

Positive semidefinite matrices

- a matrix $A \in \mathbf{R}^{n \times n}$ is positive semidefinite $(A \succeq 0)$ if
- A is symmetric: $A=A^{T}$
- $x^{T} A x \geq 0$ for all $x \in \mathbf{R}^{n}$
- $A \succeq 0$ if and only if all eigenvalues of A are nonnegative
- intuition: graph of $f(x)=x^{T} A x$ looks like a bowl

Examples in \mathbf{R}

$f(x)$	$f^{\prime \prime}(x)$
x	0
x^{2}	1
$e^{a x}$	$a^{2} e^{a x}$
$1 / x(x>0)$	$2 / x^{3}$
$-\log (x)(x>0)$	$1 / x^{2}$

Quadratic functions

- for $A \in \mathbf{R}^{n \times n}, A \succeq 0, b \in \mathbf{R}^{n}, c \in \mathbf{R}$, the quadratic function

$$
f(x)=x^{T} A x+b^{T} x+c
$$

is convex, since $\nabla^{2} f(x)=A \succeq 0$

- in particular, the least squares objective

$$
\|A x-b\|_{2}^{2}=x^{T} A^{T} A x-2(A b)^{T} x+b^{T} b
$$

is convex since $A^{T} A \succeq 0$

Epigraph

- the epigraph of a function is given by the set

$$
\operatorname{ep} \mathbf{i}(f)=\{(x, t) \mid f(x) \leq t\}
$$

- if f is convex, then $\mathbf{e p i}(f)$ is convex

- the sublevel sets of a convex function

$$
\{x \mid f(x) \leq c\}
$$

are convex for any fixed $c \in \mathbf{R}$

Ellipsoid

- any ellipsoid

$$
C=\left\{x \mid\left(x-x_{c}\right)^{T} P\left(x-x_{c}\right) \leq 1\right\}
$$

with $P \succeq 0$ is convex because it is the sublevel set of a convex quadratic function

More convex and concave functions

- any norm is convex: $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$
- $\max \left(x_{1}, \ldots, x_{n}\right)$ is convex
- $\min \left(x_{1}, \ldots, x_{n}\right)$ is concave
- absolute value $|x|$ is convex
- x^{a} is convex for $x>0$ if $a \geq 1$ or $a \geq 0$
- x^{a} is concave for $x>0$ if $0 \leq a \leq 1$
- lots more; for reference:
- CVX Users' Guide, http://web.cvxr.com/cvx/doc/funcref.html
- CVXPY Tutorial, http://www.cvxpy.org/en/latest/tutorial/functions/index.html
- Convex Optimization by Boyd and Vandenberghe

Operations that preserve convexity

Positive weighted sums

- if f_{1}, \ldots, f_{n} are convex and w_{1}, \ldots, w_{n} are all positive (or nonnegative) real numbers, then

$$
w_{1} f_{1}(x)+\cdots+w_{n} f_{n}(x)
$$

is also convex

- $7 x+2 / x$ is convex
- $x^{2}-\log (x)$ is convex
$-e^{-x}+x^{0.3}$ is concave

Operations that preserve convexity

Composition with affine function

- if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex, $A \in \mathbf{R}^{n \times m}$, and $b \in \mathbf{R}^{n}$, then

$$
g(x)=f(A x+b)
$$

is convex with $g: \mathbf{R}^{m} \rightarrow \mathbf{R}$

- mind the domain: $\operatorname{dom}(g)=\{x \mid A x+b \in \operatorname{dom}(f)\}$

Operations that preserve convexity

Function composition

- let $f, g: \mathbf{R} \rightarrow \mathbf{R}$, and $h(x)=f(g(x))$
- if f is increasing (or nondecreasing) on its domain:
- h is convex if f and g are convex
- h is concave if f and g are concave
- if f is decreasing (or nonincreasing) on its domain:
- h is convex if f is convex and g is concave
- h is concave if f is concave and g is convex
- mnemonic:
- "-" (decreasing) swaps "sign" (convex, concave)
- "+" (increasing) keeps "sign" the same (convex, convex)

Operations that preserve convexity

Function composition examples

- mind the domain and range of the functions
- $\frac{1}{\log (x)}$ is convex (for $x>1$)
- $1 / x$ is convex, decreasing (for $x>0$)
- $\log (x)$ is concave (for $x>1$)
- $\sqrt{1-x^{2}}$ is concave (for $|x| \leq 1$)
- \sqrt{x} is concave, increasing (for $x>0$)
- $1-x^{2}$ is concave

Operations that preserve convexity

- disciplined convex programming (DCP) defines this set of conventions that ensures a constructed optimization problem is convex
- DCP breaks decomposes any expression into subexpressions that require keeping track of:
- curvature of functions (constant, affine, convex, concave, unknown)
- sign information of coefficients (positive, negative, unknown)
- 'infix' operations used to combine functions (+,-,*,/)
- dcp.stanford.edu website for constructing complex convex expressions to learn composition rules

CVXPY example

- see lasso.ipynb
- recall that the least squares problem

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}
$$

is convex

- adding an $\|x\|_{1}$ term to the objective has an interesting effect: it "encourages" the solution x to be sparse
- the problem

$$
\text { minimize }\|A x-b\|_{2}^{2}+\rho\|x\|_{1}
$$

is called the LASSO and is central to the field of compressed sensing

CVXPY example

- $A \in \mathbf{R}^{30 \times 100}$, with $A_{i j} \sim \mathcal{N}(0,1)$
- observe $b=A x+\varepsilon$, where ε is noise
- more unknowns than observations!
- however, x is known to be sparse
- true x :

CVXPY example

least squares recovery given by

$$
\begin{aligned}
& \mathrm{x}=\operatorname{Variable}(\mathrm{n}) \\
& \text { obj = sum_squares }(\mathrm{A} * \mathrm{x}-\mathrm{b}) \\
& \text { Problem(Minimize (obj)). solve() }
\end{aligned}
$$

CVXPY example

LASSO recovery given by

$$
\begin{aligned}
& \mathrm{x}=\operatorname{Variable}(\mathrm{n}) \\
& \text { obj }=\text { sum_squares }(\mathrm{A} * \mathrm{x}-\mathrm{b})+\text { rho*norm }(\mathrm{x}, 1) \\
& \text { Problem(Minimize }(\mathrm{obj})) \text {).solve() }
\end{aligned}
$$

Convex Optimization Problems

Outline

```
Set Notation
Convexity
Why Convexity?
Convex Sets
Convex Functions
```

Convex Optimization Problems

Convex optimization problems

- combines convex objective functions with convex constraint sets
- constraints describe acceptable, or feasible, points
- objective gives desirability of feasible points

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C_{1} \\
& \vdots \\
& x \in C_{n}
\end{array}
$$

Constraints

- in CVXPY and other modeling languages, convex constraints are often given in epigraph or sublevel set form
- $f(x) \leq t$ or $f(x) \leq 1$ for convex f
- $f(x) \geq t$ for concave f

Equivalent problems

- loosely, we'll say that two optimization problems are equivalent if the solution from one is easily obtained from the solution to the other
- epigraph transformations:

$$
\operatorname{minimize} f(x)+g(x)
$$

equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & t+g(x) \\
\text { subject to } & f(x) \leq t
\end{array}
$$

Equivalent problems

- slack variables:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x \leq b
\end{array}
$$

equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x+t=b \\
& t \geq 0
\end{array}
$$

Equivalent problems

- dummy variables:

$$
\text { minimize } \quad f(A x+b)
$$

equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f(t) \\
\text { subject to } & A x+b=t
\end{array}
$$

Equivalent problems

- function transformations:

$$
\text { minimize }\|A x-b\|_{2}^{2}
$$

equivalent to

$$
\text { minimize } \quad\|A x-b\|_{2}
$$

since the square-root function is monotone

