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Convex optimization
Theory, methods, and software for problems exihibiting the characteristics below

I Convexity:
I convex : local solutions are global
I non-convex: local solutions are not global

I Optimization-variable type:
I continuous : gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained : simpler algorithms
I constrained : more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional : can solve even without gradients
I high-dimensional : requires gradients to be solvable in practice
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Set Notation
I Rn: set of n-dimensional real vectors
I x ∈ C: the point x is an element of set C
I C ⊆ Rn: C is a subset of Rn, i.e., elements of C are n-vectors
I can describe set elements explicitly: 1 ∈ {3, "cat", 1}
I set builder notation

C = {x |P (x)}

gives the points for which property P (x) is true
I Rn

+ = {x | xi ≥ 0 for all i}: n-vectors with all nonnegative elements
I set intersection

C =
N⋂

i=1
Ci

is the set of points which are simultaneously present in each Ci
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Convex Sets

I C ⊆ Rn is convex if
tx+ (1− t)y ∈ C

for any x, y ∈ C and 0 ≤ t ≤ 1
I that is, a set is convex if the line connecting any two points in the set is entirely

inside the set
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Nonconvex Set
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Convex Functions

I f : Rn → R is convex if dom(f) (the domain of f) is a convex set, and

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for any x, y ∈ dom(f) and 0 ≤ t ≤ 1
I that is, convex functions are “bowl-shaped”; the line connecting any two points on

the graph of the function stays above the graph
I f is concave if −f is convex
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Convex Function
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Nonconvex Function
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Convex Optimization Problem

I the optimization problem
minimize f(x)
subject to x ∈ C

is convex if f : Rn → R is convex and C ⊆ Rn is convex
I any concave optimization problem

maximize g(x)
subject to x ∈ C

for concave g and convex C can be rewritten as a convex problem by minimizing
−g instead
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Minimizers

I all local minimizers are global minimizers

local min. global min.
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Algorithms

I intuitive algorithms work: “just go down” leads you to the global minimum
I can’t get stuck close to local minimizers
I good software to solve convex optimization problems
I writing down a convex optimization problem is as good as having the

(computational) solution

Why Convexity? 18



Expressiveness

I Convexity is a modeling constraint. Most problems are not convex
I However, convex optimization is very expressive, with many applications:

I machine learning
I engineering design
I finance
I signal processing

I Convex modeling tools like CVXPY (Python) make it easier to describe convex
problems
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Nonconvex Extensions

I even though most problems are not convex, convex optimization can still be useful
I approximate nonconvex problem with a convex model
I sequential convex programming (SCP) uses convex optimization as a subroutine in a

nonconvex solver:
I locally approximate the problem as convex
I solve local model
I step to new point
I re-approximate and repeat
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Examples

I empty set: ∅
I set containing a single point: {x0} for x0 ∈ Rn

I Rn

I positive orthant: Rn
+ = {x |xi ≥ 0, ∀i}

Rn
+
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Hyperplanes and Halfspaces
I hyperplane C = {x | aTx = b}

a

x0

aTx = b

I halfspace C = {x | aTx ≥ b}

a

x0
aTx >= b

aTx <= b
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Norm Balls

I a norm ‖ · ‖ : Rn → R is any function such that
I ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0
I ‖tx‖ = |t|‖x‖ for t ∈ R
I ‖x+ y‖ ≤ ‖x‖+ ‖y‖

I ‖x‖2 =
√∑n

i=1 x
2
i

I ‖x‖1 =
∑n

i=1 |xi|
I ‖x‖∞ = maxi |xi|
I unit norm ball, {x | ‖x‖ ≤ 1}, is convex for any norm
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Norm Ball Proof

I let C = {x | ‖x‖ ≤ 1}
I to check convexity, assume x, y ∈ C, and 0 ≤ t ≤ 1
I then,

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖
= t‖x‖+ (1− t)‖y‖
≤ t+ (1− t)
= 1

I so tx+ (1− t)y ∈ C, showing convexity
I this proof is typical for showing convexity
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Intersection of Convex Sets
I the intersection of any number of convex sets is convex
I example: polyhedron is the intersection of halfspaces

I rewrite
⋂m

i=1{x | aT
i x ≤ bi} as {x |Ax ≤ b}, where

A =

a
T
1
...
aT

m

 , b =

b
T
1
...
bT

m


I Ax ≤ b is componentwise or vector inequality
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More Examples

I solutions to a system of linear equations Ax = b forms a convex set (intersection of
hyperplanes)

I probability simplex, C = {x |x ≥ 0, 1Tx = 1} is convex (intersection of positive
orthant and hyperplane)
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CVXPY for Convex Intersection

I see set_examples.ipynb
I use CVXPY to solve the convex set intersection problem

minimize 0
subject to x ∈ C1 ∪ · · · ∪ Cm

I set intersection given by list of constraints
I example: find a point in the intersection of two lines

2x+ y = 4
−x+ 5y = 0
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CVXPY code
from cvxpy import *

x = Variable()
y = Variable()

obj = Minimize(0)
constr = [2*x + y == 4,

-x + 5*y == 0]

Problem(obj, constr).solve()

print x.value, y.value
I results in x ≈ 1.8, y ≈ .36
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Diet Problem

I a classic problem in optimization is to meet the nutritional requirements of an army
via various foods (with different nutritional benefits and prices) under cost
constraints

I one soldier requires 1, 2.1, and 1.7 units of meat, vegetables, and grain, respectively,
per day (r = (1, 2.1, 1.7))

I one unit of hamburgers has nutritional value h = (.8, .4, .5) and costs $1
I one unit of cheerios has nutritional value c = (0, .3, 2.0) and costs $0.25
I prices p = (1, 0.25)
I you have a budget of $130 to buy hamburgers and cheerios for one day
I can you meet the dietary needs of 50 soldiers?
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Diet Problem
I write as optimization problem

minimize 0
subject to pTx ≤ 130

x1h+ x2c ≥ 50r
x ≥ 0

with x giving units of hamburgers and cheerios
I or, with A = [h, c],

minimize 0
subject to pTx ≤ 130

Ax ≥ 50r
x ≥ 0
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Diet Problem: CVXPY Code

x = Variable(2)
obj = Minimize(0)
constr = [x.T*p <= 130,

h*x[0] + c*x[1] >= 50*r,
x >= 0]

prob = Problem(obj, constr)
prob.solve(solver='SCS')
print x.value
I non-unique solution x ≈ (62.83, 266.57)
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Diet problem

I reformulate the problem to find the cheapest diet:

minimize pTx
subject to x1h+ x2c ≥ 50r

x ≥ 0

I with CVXPY, we feed the troops for $129.17:
x = Variable(2)
obj = Minimize(x.T*p)
constr = [h*x[0] + c*x[1] >= 50*r,

x >= 0]
Problem(obj, constr).solve()
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First-order condition
I for differentiable f : Rn → R, the gradient ∇f exists at each point in dom(f)
I f is convex if and only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)T (y − x)
for all x, y ∈ dom(f)

I that is, the first-order Taylor approximation is a global underestimator of f

f(y)

f(x) + ∇f(x)T(y-x)

(x, f(x))
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Second-order condition

I for twice differentiable f : Rn → R, the Hessian ∇2f , or second derivative
matrix, exists at each point in dom(f)

I f is convex if and only if for all x ∈ dom(f),

∇2f(x) � 0

I that is, the Hessian matrix must be positive semidefinite
I if n = 1, simplifies to f ′′(x) ≥ 0
I first- and second-order conditions generalize to non-differentiable convex functions
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Positive semidefinite matrices

I a matrix A ∈ Rn×n is positive semidefinite (A � 0) if
I A is symmetric: A = AT

I xTAx ≥ 0 for all x ∈ Rn

I A � 0 if and only if all eigenvalues of A are nonnegative
I intuition: graph of f(x) = xTAx looks like a bowl
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Examples in R

f(x) f ′′(x)

x 0
x2 1
eax a2eax

1/x (x > 0) 2/x3

− log(x) (x > 0) 1/x2
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Quadratic functions

I for A ∈ Rn×n, A � 0, b ∈ Rn, c ∈ R, the quadratic function

f(x) = xTAx+ bTx+ c

is convex, since ∇2f(x) = A � 0
I in particular, the least squares objective

‖Ax− b‖22 = xTATAx− 2(Ab)Tx+ bT b

is convex since ATA � 0

Convex Functions 41



Epigraph
I the epigraph of a function is given by the set

epi(f) = {(x, t) | f(x) ≤ t}
I if f is convex, then epi(f) is convex

epi(f)

X

t

I the sublevel sets of a convex function

{x | f(x) ≤ c}

are convex for any fixed c ∈ R
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Ellipsoid
I any ellipsoid

C = {x | (x− xc)TP (x− xc) ≤ 1}
with P � 0 is convex because it is the sublevel set of a convex quadratic function

xc
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More convex and concave functions
I any norm is convex: ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞
I max(x1, . . . , xn) is convex
I min(x1, . . . , xn) is concave
I absolute value |x| is convex
I xa is convex for x > 0 if a ≥ 1 or a ≥ 0
I xa is concave for x > 0 if 0 ≤ a ≤ 1
I lots more; for reference:

I CVX Users’ Guide, http://web.cvxr.com/cvx/doc/funcref.html
I CVXPY Tutorial,

http://www.cvxpy.org/en/latest/tutorial/functions/index.html
I Convex Optimization by Boyd and Vandenberghe
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Operations that preserve convexity

Positive weighted sums
I if f1, . . . , fn are convex and w1, . . . , wn are all positive (or nonnegative) real

numbers, then
w1f1(x) + · · ·+ wnfn(x)

is also convex
I 7x+ 2/x is convex
I x2 − log(x) is convex
I −e−x + x0.3 is concave
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Operations that preserve convexity

Composition with affine function
I if f : Rn → R is convex, A ∈ Rn×m, and b ∈ Rn, then

g(x) = f(Ax+ b)

is convex with g : Rm → R
I mind the domain: dom(g) = {x |Ax+ b ∈ dom(f)}
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Operations that preserve convexity

Function composition
I let f, g : R→ R, and h(x) = f(g(x))
I if f is increasing (or nondecreasing) on its domain:

I h is convex if f and g are convex
I h is concave if f and g are concave

I if f is decreasing (or nonincreasing) on its domain:
I h is convex if f is convex and g is concave
I h is concave if f is concave and g is convex

I mnemonic:
I “-” (decreasing) swaps “sign” (convex, concave)
I “+” (increasing) keeps “sign” the same (convex, convex)
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Operations that preserve convexity

Function composition examples
I mind the domain and range of the functions
I 1

log(x) is convex (for x > 1)
I 1/x is convex, decreasing (for x > 0)
I log(x) is concave (for x > 1)

I
√

1− x2 is concave (for |x| ≤ 1)
I
√
x is concave, increasing (for x > 0)

I 1− x2 is concave
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Operations that preserve convexity

I disciplined convex programming (DCP) defines this set of conventions that ensures
a constructed optimization problem is convex

I DCP breaks decomposes any expression into subexpressions that require keeping
track of:
I curvature of functions (constant, affine, convex, concave, unknown)
I sign information of coefficients (positive, negative, unknown)
I ‘infix’ operations used to combine functions (+,-,*,/)

I dcp.stanford.edu website for constructing complex convex expressions to learn
composition rules
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CVXPY example

I see lasso.ipynb
I recall that the least squares problem

minimize ‖Ax− b‖22

is convex
I adding an ‖x‖1 term to the objective has an interesting effect: it “encourages” the

solution x to be sparse
I the problem

minimize ‖Ax− b‖22 + ρ‖x‖1
is called the LASSO and is central to the field of compressed sensing
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CVXPY example
I A ∈ R30×100, with Aij ∼ N (0, 1)
I observe b = Ax+ ε, where ε is noise
I more unknowns than observations!
I however, x is known to be sparse
I true x:
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CVXPY example
least squares recovery given by
x = Variable(n)
obj = sum_squares(A*x - b)
Problem(Minimize(obj)).solve()
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CVXPY example
LASSO recovery given by
x = Variable(n)
obj = sum_squares(A*x - b) + rho*norm(x,1)
Problem(Minimize(obj)).solve()
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Convex Optimization Problems
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Convex optimization problems

I combines convex objective functions with convex constraint sets
I constraints describe acceptable, or feasible, points
I objective gives desirability of feasible points

minimize f(x)
subject to x ∈ C1

...
x ∈ Cn
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Constraints

I in CVXPY and other modeling languages, convex constraints are often given in
epigraph or sublevel set form
I f(x) ≤ t or f(x) ≤ 1 for convex f
I f(x) ≥ t for concave f

Convex Optimization Problems 57



Equivalent problems

I loosely, we’ll say that two optimization problems are equivalent if the solution from
one is easily obtained from the solution to the other

I epigraph transformations:

minimize f(x) + g(x)

equivalent to
minimize t+ g(x)
subject to f(x) ≤ t
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Equivalent problems

I slack variables:
minimize f(x)
subject to Ax ≤ b

equivalent to
minimize f(x)
subject to Ax+ t = b

t ≥ 0
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Equivalent problems

I dummy variables:
minimize f(Ax+ b)

equivalent to
minimize f(t)
subject to Ax+ b = t
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Equivalent problems

I function transformations:

minimize ‖Ax− b‖22

equivalent to
minimize ‖Ax− b‖2

since the square-root function is monotone
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