Convex Sets, Functions, and Problems

Nick Henderson, AJ Friend (Stanford University) Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Convex optimization

Theory, methods, and software for problems exihibiting the characteristics below

Convexity:

- convex : local solutions are global
- non-convex: local solutions are not global
- Optimization-variable type:
 - continuous : gradients facilitate computing the solution
 - discrete: cannot compute gradients, NP-hard
- Constraints:
 - unconstrained : simpler algorithms
 - constrained : more complex algorithms; must consider feasibility
- Number of optimization variables:
 - Iow-dimensional : can solve even without gradients
 - high-dimensional : requires gradients to be solvable in practice

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Set Notation

- ▶ **R**ⁿ: set of *n*-dimensional real vectors
- $\blacktriangleright x \in C$: the point x is an element of set C
- ▶ $C \subseteq \mathbf{R}^n$: C is a subset of \mathbf{R}^n , *i.e.*, elements of C are n-vectors
- \blacktriangleright can describe set elements explicitly: $1\in\{3,\texttt{"cat"},1\}$
- set builder notation

$$C = \{x \mid P(x)\}$$

gives the points for which property P(x) is true

- ▶ $\mathbf{R}^n_+ = \{x \mid x_i \ge 0 \text{ for all } i\}$: *n*-vectors with all nonnegative elements
- set intersection

$$C = \bigcap_{i=1}^{N} C_i$$

is the set of points which are simultaneously present in each C_i

Set Notation

Convexity

Convexity

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Convexity

Convex Sets

• $C \subseteq \mathbf{R}^n$ is convex if

$$tx + (1-t)y \in C$$

for any $x,y\in C$ and $0\leq t\leq 1$

that is, a set is convex if the line connecting any two points in the set is entirely inside the set

Convex Set

Nonconvex Set

Convex Functions

▶ $f : \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom}(f)$ (the domain of f) is a convex set, and

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

for any $x, y \in \mathbf{dom}(f)$ and $0 \le t \le 1$

- that is, convex functions are "bowl-shaped"; the line connecting any two points on the graph of the function stays above the graph
- f is concave if -f is convex

Convex Optimization Problem

the optimization problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

is convex if $f:\mathbf{R}^n\to\mathbf{R}$ is convex and $C\subseteq\mathbf{R}^n$ is convex

any concave optimization problem

 $\begin{array}{ll} \text{maximize} & g(x) \\ \text{subject to} & x \in C \end{array}$

for $\mathbf{concave}\ g$ and $\mathbf{convex}\ C$ can be rewritten as a \mathbf{convex} problem by minimizing -g instead

Why Convexity?

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Why Convexity?

▶ all local minimizers are global minimizers

Why Convexity?

Algorithms

- intuitive algorithms work: "just go down" leads you to the global minimum
- can't get stuck close to local minimizers
- good software to solve convex optimization problems
- writing down a convex optimization problem is as good as having the (computational) solution

Expressiveness

- Convexity is a modeling constraint. Most problems are **not** convex
- ▶ However, convex optimization is **very** expressive, with many applications:
 - machine learning
 - engineering design
 - finance
 - signal processing
- Convex modeling tools like CVXPY (Python) make it easier to describe convex problems

Nonconvex Extensions

- even though most problems are not convex, convex optimization can still be useful
- approximate nonconvex problem with a convex model
- sequential convex programming (SCP) uses convex optimization as a subroutine in a nonconvex solver:
 - Iocally approximate the problem as convex
 - solve local model
 - step to new point
 - re-approximate and repeat

Convex Sets

Convex Sets

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Convex Sets

Examples

- ▶ empty set: ∅
- ▶ set containing a single point: $\{x_0\}$ for $x_0 \in \mathbf{R}^n$
- $\triangleright \mathbf{R}^n$
- positive orthant: $\mathbf{R}^n_+ = \{x \mid x_i \ge 0, \forall i\}$

Hyperplanes and Halfspaces

• hyperplane
$$C = \{x \mid a^T x = b\}$$

• halfspace
$$C = \{x \mid a^T x \ge b\}$$

Norm Balls

a norm || · || : Rⁿ → R is any function such that
||x|| ≥ 0, and ||x|| = 0 if and only if x = 0
||tx|| = |t|||x|| for t ∈ R
||x + y|| ≤ ||x|| + ||y||
||x||₂ =
$$\sqrt{\sum_{i=1}^{n} x_i^2}$$
||x||₁ = $\sum_{i=1}^{n} |x_i|$
||x||_∞ = max_i |x_i|
||x||_∞ = max_i |x_i|
unit norm ball, {x | ||x|| ≤ 1}, is convex for any norm

Convex Sets

Norm Ball Proof

- ▶ let $C = \{x \mid ||x|| \le 1\}$
- ▶ to check convexity, assume $x, y \in C$, and $0 \le t \le 1$

then,

$$||tx + (1 - t)y|| \le ||tx|| + ||(1 - t)y||$$

= t||x|| + (1 - t)||y||
 $\le t + (1 - t)$
= 1

- ▶ so $tx + (1 t)y \in C$, showing convexity
- this proof is typical for showing convexity

Intersection of Convex Sets

- the intersection of any number of convex sets is convex
- **example**: polyhedron is the intersection of halfspaces

• rewrite $\bigcap_{i=1}^{m} \{ x \mid a_i^T x \leq b_i \}$ as $\{ x \mid Ax \leq b \}$, where

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \ b = \begin{bmatrix} b_1^T \\ \vdots \\ b_m^T \end{bmatrix}$$

• $Ax \leq b$ is componentwise or vector inequality Convex Sets

More Examples

- solutions to a system of linear equations Ax = b forms a convex set (intersection of hyperplanes)
- ▶ probability simplex, $C = \{x \mid x \ge 0, 1^T x = 1\}$ is convex (intersection of positive orthant and hyperplane)

CVXPY for Convex Intersection

- see set_examples.ipynb
- use CVXPY to solve the convex set intersection problem

 $\begin{array}{ll} \mbox{minimize} & 0 \\ \mbox{subject to} & x \in C_1 \cup \dots \cup C_m \end{array}$

- set intersection given by list of constraints
- **example**: find a point in the intersection of two lines

$$2x + y = 4$$
$$-x + 5y = 0$$

CVXPY code

from cvxpy import *

x = Variable()
y = Variable()

Problem(obj, constr).solve()

print x.value, y.value

▶ results in $x \approx 1.8$, $y \approx .36$

Convex Sets

Diet Problem

- a classic problem in optimization is to meet the nutritional requirements of an army via various foods (with different nutritional benefits and prices) under cost constraints
- one soldier requires 1, 2.1, and 1.7 units of meat, vegetables, and grain, respectively, per day (r = (1, 2.1, 1.7))
- one unit of hamburgers has nutritional value h = (.8, .4, .5) and costs \$1
- ▶ one unit of cheerios has nutritional value c = (0, .3, 2.0) and costs \$0.25
- $\blacktriangleright \text{ prices } p = (1, 0.25)$
- ▶ you have a budget of \$130 to buy hamburgers and cheerios for one day
- can you meet the dietary needs of 50 soldiers?

Diet Problem

write as optimization problem

minimize 0
subject to
$$p^T x \le 130$$

 $x_1h + x_2c \ge 50r$
 $x \ge 0$

with x giving units of hamburgers and cheerios • or, with A = [h, c],

$$\begin{array}{ll} \mbox{minimize} & 0 \\ \mbox{subject to} & p^T x \leq 130 \\ & Ax \geq 50r \\ & x \geq 0 \end{array}$$

Convex Sets

Diet Problem: CVXPY Code

```
prob = Problem(obj, constr)
prob.solve(solver='SCS')
print x.value
```

▶ non-unique solution $x \approx (62.83, 266.57)$

Convex Sets

Diet problem

reformulate the problem to find the cheapest diet:

$$\begin{array}{ll} \mbox{minimize} & p^T x \\ \mbox{subject to} & x_1 h + x_2 c \geq 50 r \\ & x \geq 0 \end{array}$$

▶ with CVXPY, we feed the troops for \$129.17:

Convex Functions

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

First-order condition

- ▶ for differentiable $f : \mathbf{R}^n \to \mathbf{R}$, the gradient ∇f exists at each point in $\mathbf{dom}(f)$
- f is convex if and only if $\mathbf{dom}(f)$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbf{dom}(f)$

 \blacktriangleright that is, the first-order Taylor approximation is a **global underestimator** of f

Second-order condition

- ▶ for twice differentiable $f : \mathbb{R}^n \to \mathbb{R}$, the Hessian $\nabla^2 f$, or second derivative matrix, exists at each point in $\operatorname{dom}(f)$
- f is convex if and only if for all $x \in \mathbf{dom}(f)$,

 $\nabla^2 f(x) \succeq 0$

- that is, the Hessian matrix must be positive semidefinite
- if n = 1, simplifies to $f''(x) \ge 0$
- first- and second-order conditions generalize to non-differentiable convex functions

Positive semidefinite matrices

- ▶ a matrix $A \in \mathbf{R}^{n \times n}$ is positive semidefinite $(A \succeq 0)$ if
 - A is symmetric: $A = A^T$
 - $\blacktriangleright x^T A x \ge 0 \text{ for all } x \in \mathbf{R}^n$
- $A \succeq 0$ if and only if all **eigenvalues** of A are nonnegative
- ▶ intuition: graph of $f(x) = x^T A x$ looks like a bowl

Examples in ${\boldsymbol{\mathsf{R}}}$

f(x)	f''(x)
x	0
x^2	1
e^{ax}	$a^2 e^{ax}$
$1/x \ (x > 0)$	$2/x^{3}$
$-\log(x) \ (x > 0)$	$1/x^{2}$

Quadratic functions

▶ for $A \in \mathbf{R}^{n \times n}$, $A \succeq 0$, $b \in \mathbf{R}^n$, $c \in \mathbf{R}$, the quadratic function

$$f(x) = x^T A x + b^T x + c$$

is convex, since $\nabla^2 f(x) = A \succeq 0$

▶ in particular, the least squares objective

$$||Ax - b||_2^2 = x^T A^T A x - 2(Ab)^T x + b^T b$$

is convex since $A^TA \succeq 0$

Epigraph

• the **epigraph** of a function is given by the set

$$\mathbf{epi}(f) = \{(x,t) \mid f(x) \le t\}$$

• if f is convex, then epi(f) is convex

the sublevel sets of a convex function

$$\{x \,|\, f(x) \le c\}$$

are convex for any fixed $c \in \mathbf{R}$ Convex Functions

Ellipsoid

> any ellipsoid

$$C = \{x \mid (x - x_c)^T P(x - x_c) \le 1\}$$

with $P \succeq 0$ is convex because it is the sublevel set of a convex quadratic function

More convex and concave functions

- ▶ any norm is convex: $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_\infty$
- \blacktriangleright max (x_1, \ldots, x_n) is convex
- $\min(x_1,\ldots,x_n)$ is concave
- \blacktriangleright absolute value |x| is convex
- x^a is convex for x > 0 if $a \ge 1$ or $a \ge 0$
- x^a is concave for x > 0 if $0 \le a \le 1$
- **lots** more; for reference:
 - CVX Users' Guide, http://web.cvxr.com/cvx/doc/funcref.html
 - CVXPY Tutorial,

http://www.cvxpy.org/en/latest/tutorial/functions/index.html

• Convex Optimization by Boyd and Vandenberghe

Positive weighted sums

• if f_1, \ldots, f_n are convex and w_1, \ldots, w_n are all positive (or nonnegative) real numbers, then

 $w_1f_1(x) + \dots + w_nf_n(x)$

is also convex

• 7x + 2/x is convex • $x^2 - \log(x)$ is convex • $-e^{-x} + x^{0.3}$ is concave

Composition with affine function

▶ if $f : \mathbf{R}^n \to \mathbf{R}$ is convex, $A \in \mathbf{R}^{n \times m}$, and $b \in \mathbf{R}^n$, then

$$g(x) = f(Ax + b)$$

is convex with $g: \mathbf{R}^m \to \mathbf{R}$

• mind the domain: $\operatorname{dom}(g) = \{x \mid Ax + b \in \operatorname{dom}(f)\}$

Function composition

- $\blacktriangleright \ \, \text{let} \ \, f,g:\mathbf{R}\rightarrow\mathbf{R}\text{, and }h(x)=f(g(x))$
- ▶ if *f* is **increasing** (or nondecreasing) on its domain:
 - h is convex if f and g are convex
 - h is concave if f and g are concave
- ▶ if *f* is **decreasing** (or nonincreasing) on its domain:
 - h is convex if f is convex and g is concave
 - h is concave if f is concave and g is convex
- mnemonic:
 - "-" (decreasing) swaps "sign" (convex, concave)
 - "+" (increasing) keeps "sign" the same (convex, convex)

Function composition examples

- disciplined convex programming (DCP) defines this set of conventions that ensures a constructed optimization problem is convex
- DCP breaks decomposes any expression into subexpressions that require keeping track of:
 - curvature of functions (constant, affine, convex, concave, unknown)
 - sign information of coefficients (positive, negative, unknown)
 - 'infix' operations used to combine functions (+,-,*,/)
- dcp.stanford.edu website for constructing complex convex expressions to learn composition rules

- see lasso.ipynb
- recall that the least squares problem

minimize $||Ax - b||_2^2$

is convex

• adding an $||x||_1$ term to the objective has an interesting effect: it "encourages" the solution x to be **sparse**

the problem

minimize
$$||Ax - b||_2^2 + \rho ||x||_1$$

is called the LASSO and is central to the field of *compressed sensing*

- $\blacktriangleright \ A \in \mathbf{R}^{30 \times 100} \text{, with } A_{ij} \sim \mathcal{N}(0,1)$
- observe $b = Ax + \varepsilon$, where ε is noise
- more unknowns than observations!
- \blacktriangleright however, x is known to be sparse
- true x:

least squares recovery given by

```
x = Variable(n)
obj = sum_squares(A*x - b)
Problem(Minimize(obj)).solve()
```



```
LASSO recovery given by
x = Variable(n)
obj = sum_squares(A*x - b) + rho*norm(x,1)
Problem(Minimize(obj)).solve()
```


Convex Optimization Problems

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

- combines convex objective functions with convex constraint sets
- constraints describe acceptable, or feasible, points
- objective gives desirability of feasible points

minimize
$$f(x)$$

subject to $x \in C_1$
 \vdots
 $x \in C_n$

Constraints

- in CVXPY and other modeling languages, convex constraints are often given in epigraph or sublevel set form
 - $f(x) \leq t$ or $f(x) \leq 1$ for convex f
 - $f(x) \ge t$ for concave f

- loosely, we'll say that two optimization problems are equivalent if the solution from one is easily obtained from the solution to the other
- **epigraph** transformations:

minimize f(x) + g(x)

equivalent to

 $\begin{array}{ll} \text{minimize} & t+g(x) \\ \text{subject to} & f(x) \leq t \end{array}$

slack variables:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax \leq b \end{array}$

equivalent to

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & Ax+t=b \\ & t \geq 0 \end{array}$

dummy variables:

minimize f(Ax+b)

equivalent to

 $\begin{array}{ll} \mbox{minimize} & f(t) \\ \mbox{subject to} & Ax+b=t \end{array}$

function transformations:

minimize $||Ax - b||_2^2$

equivalent to

minimize $||Ax - b||_2$

since the square-root function is monotone