
Optimization for Machine Learning

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

1

Model fitting

Model fitting 2

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Model fitting 3

Notation

The notation between these worlds is not consistent
I Optimization

I f : optimization objective function
I x: optimization variables

I Machine learning (this set of slides)
I φ: optimization objective function (i.e., loss function)
I β or θ: optimization variables (i.e., model parameters)
I f : regression function mapping inputs to outputs
I x: model inputs (i.e., independent variable)
I y: model outputs (i.e., response variable)

Model fitting 4

Least-squares regression

I A type of model fitting with many applications
I Goal: find a model that best fits training data in the least-squares sense
I Illuminates the connection between unconstrained optimization and

statistics/machine learning
I We will use the following iPython notebooks

I least-squares.ipynb
I polynomial-fit.ipynb
I smooth.ipynb
I huber.ipynb

Model fitting 5

Linear least squares: 1D case with linear data

Linear least squares: 1D case with linear data 6

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: 1D case with linear data 7

Problem set up
I Given: m training examples (i.e., training set)

xi: independent variable yi: response variable
0.0 0.46
0.11 0.31
0.22 0.38
0.33 0.39
0.44 0.65
0.56 0.40
0.67 0.87
0.78 0.69
0.89 0.87
1.0 0.88

I Goal: construct a model that can predict y from x

Linear least squares: 1D case with linear data 8

Where might these data come from?

x: independent variable y: response variable
height weight

square feet price of home
device property failure rate

stock market return individual asset return
I Regression can be applied regardless of the origin of the data!

Linear least squares: 1D case with linear data 9

Regression: Approach
Goal: construct a model that can predict y from x

I In general, we do not know the mathematical model characterizing the underlying
process that actually generated the data

I So, we assume that the data were generated from a model comprising the sum of a
(deterministic) function and (stochastic) iid Gaussian noise:

yi = ftrue(xi) + σ · εi, i = 1, . . . ,m

with ftrue(xi) unknown and εi ∼ N(0, 1)
I We aim to construct f(x) such that f(x) ≈ ftrue(x) in some sense
I This is known as regression and is performed via optimization

I objective function: residual sum of squares 1
2
∑m

i=1(f(xi)− yi)2

I optimization variables: parameters within the assumed form of f(x)
I Then, we can make predictions y ≈ f(x) for new values of x.

Linear least squares: 1D case with linear data 10

Follow along in Python

I See least-squares.ipynb
I In this case, we have set ftrue(x) = θtrue · xi + btrue and σ = 0.1

I θtrue = 0.6
I btrue = 0.3

I Run the first three cells of least-squares.ipynb
I Python code to generate data (in second cell):

np.random.seed(1)
theta = 0.6
b = 0.3
sigma = .1
x = np.linspace(0,1,10)
y = theta*x + b + sigma*np.random.standard_normal(x.shape)

Linear least squares: 1D case with linear data 11

Plot the data

0.00 0.25 0.50 0.75 1.00
x: independent variable

0.00

0.25

0.50

0.75

1.00

y
:

re
sp

on
se

va
ri

ab
le

ftrue(x)

ftrue(xi) + σεi

Linear least squares: 1D case with linear data 12

The residuals

I Any given data point will result in some error or residual

ri = f(xi)− yi

I Due to the Gaussian noise, yi = ftrue(xi) + σ · εi 6= ftrue(xi). Thus, the true
function ftrue(x) will yield residuals

rtrue,i = ftrue(xi)− yi = −σ · εi

Linear least squares: 1D case with linear data 13

The residuals for ftrue(x)

0.00 0.25 0.50 0.75 1.00
x: independent variable

0.00

0.25

0.50

0.75

1.00

y
:

re
sp

on
se

va
ri

ab
le

ftrue(x)

ftrue(xi) + σεi
residuals for ftrue

Linear least squares: 1D case with linear data 14

Linear regression in one dimension

I In linear regression, we enforce the regression function f(x) to be linear

f(x; θ, b) = θ · x+ b

I regression function has two parameters: the slope θ and the y-intercept b
I semicolon separates model input from model parameters

I Note: the form of f(x) usually does not match the (generally unknown) form of
ftrue(x). We are lucky if this happens!

Linear least squares: 1D case with linear data 15

Fit the model via optimization

I Given training data (xi, yi)mi=1 with xi ∈ R and yi ∈ R
I To fit the model, construct an optimization problem

minimize
θ,b

φ(θ, b) = 1
2
∑m
i=1 ri(θ, b)2 = 1

2
∑m
i=1(f(xi; θ, b)− yi)2

I Optimization objective function: residual sum of squares (RSS)
I one contribution from each of the m training examples

I Optimization variables: parameters θ and b
I If the true underlying model actually is yi = θtrue · xi + btrue + σ · εi with εi

mean-zero Gaussian, then θ and b are the maximum-likelihood estimates of θtrue
and btrue

Linear least squares: 1D case with linear data 16

Objective function

slope variable m

0.000.250.500.75
1.00

in
te

rc
ep

t va
ria

ble
b

0.00
0.25

0.50
0.75

1.00

1

2

least-squares objective function

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8
slope variable m

0.0

0.2

0.4

0.6

0.8

in
te

rc
ep

t
va

ri
ab

le
b

0.400

0.500

0.600

0.700

0.700

0.800

0.800

0.900

0.900

1.000

1.000

1.100

1.100

1.200

1.200

1.300

1.300

1.400

1.400

1.500

1.500

1.600

1.600

1.700

1.700

1.800

1.800

1.900

2.000

2.100

2.200

2.300

2.400
2.500

2.600
2.700

contours of least-squares objective function

I The objective function φ(θ, b) is appears to be convex (it is!)
I The global minimum occurs around θ? ≈ 0.6 and b? ≈ 0.35

Linear least squares: 1D case with linear data 17

Optimizing by hand

Recall the sufficient conditions for (unconstrained) optimality:
1. ∇φ(θ?, b?) = 0
2. ∇2φ(θ?, b?) � 0. This holds everywhere!

I The objective function is strongly convex
I This simplifies things: we only need to find a stationary point satisfying condition 1
I This is one reason why convex optimization is so nice!

Let’s compute θ? and b? such that that the first condition holds.

Linear least squares: 1D case with linear data 18

Compute gradient analytically and set to zero
Analytical gradient computation:

∂φ

∂θ
= 1

2

m∑
i=1

∂

∂θ
(θ · xi + b− yi)2 = θ

∑
x2
i + b

∑
xi −

∑
xiyi

∂φ

∂b
= 1

2

m∑
i=1

∂

∂b
(θ · xi + b− yi)2 = θ

∑
xi + nb−

∑
yi

Set analytical gradient to zero and obtain a system of equations:

∂φ

∂θ
= 0

∂φ

∂b
= 0

Linear least squares: 1D case with linear data 19

Solution

θ =
∑
xiyi − 1

m

∑
xi
∑
yi∑

x2
i − 1

m(
∑
xi)2

b =
∑
yi − θ

∑
xi

m

Linear least squares: 1D case with linear data 20

Let’s look at θ
Something looks nice here:

θ =
∑
xiyi − 1

m

∑
xi
∑
yi∑

x2
i − 1

m(
∑
xi)2

Multiply both numerator and denominator by 1/m:

θ =
1
m

∑
xiyi − 1

m

∑
xi

1
m

∑
yi

1
m

∑
x2
i − (1

m

∑
xi)2

We see sample covariance and variance here!

θ = cov(X,Y)
var(X)

Linear least squares: 1D case with linear data 21

Let’s solve in Python!

Code:
solve via numpy covariance function
A = np.vstack((x,y))
V = np.cov(A)
theta_est = V[0,1] / V[0,0]
b_est = (y.sum() - theta_est*x.sum()) / len(x)
print(theta_est)
print(b_est)
Result:
theta_est = 0.56604 (true value = 0.6)
b_est = 0.30727 (true value = 0.3)

Linear least squares: 1D case with linear data 22

Look at the plot

0.00 0.25 0.50 0.75 1.00
x: independent variable

0.00

0.25

0.50

0.75

1.00

y
:

re
sp

on
se

va
ri

ab
le

true

estimated

Linear least squares: 1D case with linear data 23

Solve in CVXPY

Remember the optimization problem: minimize 1
2
∑m
i=1(θ · xi + b− yi)2

We can write this directly in CVXPY:
from cvxpy import *
Construct the problem.
theta_cvx = Variable()
b_cvx = Variable()
objective = Minimize(sum_squares(theta_cvx*x + b_cvx - y))
prob = Problem(objective)
The optimal objective is returned by prob.solve().
result = prob.solve()
theta_cvx.value = 0.56604, b_cvx.value = 0.30727

Linear least squares: 1D case with linear data 24

Linear least squares: 1D case with non-linear data

Linear least squares: 1D case with non-linear data 25

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: 1D case with non-linear data 26

What about these data?

0 1 2 3 4
x: independent variable

0

5

10

15

20

y
:

re
sp

on
se

va
ri

ab
le

I Here, ftrue(x) = θtrue exp(x) + btrue, which we do not know
I We just have access to the data!

Linear least squares: 1D case with non-linear data 27

We could fit a linear model
I Given our ignorance of ftrue, we could fit a linear model

f(x; θ, b) = θ · x+ b,

0 1 2 3 4
x: independent variable

0

5

10

15

20

y
:

re
sp

on
se

va
ri

ab
le

linear fit

I This yields an objective-function value of φ(θ, b) = 283.63
Linear least squares: 1D case with non-linear data 28

We can also fit an exponential model
I If we think that the underlying model may be exponential, we can also try

f(x; θ, b) = θ · exp(x) + b

I Model still linear in the parameters θ and b: “Linear least squares” (same
optimization problem)

I But model nonlinear in the parameters: “Nonlinear regression”

CVXPY code:
theta = Variable()
b = Variable()
objective = Minimize(sum_squares(theta*np.exp(x) + b - y))
prob = Problem(objective)
result = prob.solve()

Linear least squares: 1D case with non-linear data 29

Result

0 1 2 3 4
x: independent variable

0

5

10

15

20

y
:

re
sp

on
se

va
ri

ab
le

linear fit

exponential fit

true

I This yields a smaller objective-function value of φ(θ, b) = 122.80
I better fit to training data

I Caution: can overfit training data
I must assess generalization error on an independent test set

Linear least squares: 1D case with non-linear data 30

Linear least squares: general formulation and matrix–vector form

Linear least squares: general formulation and matrix–vector form 31

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: general formulation and matrix–vector form 32

General formulation for linear least squares

I x ∈ Rp: p-dimensional model inputs (i.e., independent variables)
I y ∈ R: model outputs (i.e., response variable)
I f : Rp → R: model a linear combination of n functions fi : Rn → R, i = 1, . . . , n:

f(x;β) =
n∑
i=1

fi(x)βi

I If fi is nonlinear in x, then this is “nonlinear regression”
I Previous example: m = 2; f1(x) = 1; f2(x) = x or f2(x) = exp(x); β1 = θ, β2 = m

I β = (β1, . . . , βn) ∈ Rn: optimization variables (i.e., model parameters)

Linear least squares: general formulation and matrix–vector form 33

Matrix–vector form
I Assume input–output data of the form (xj , yj)mj=1
I The residual for the jth data point is rj(β) = f(xj ;β)− yj
I Residual sum of squares (RSS) objective function is

φ(β) = 1
2

m∑
j=1

rj(β)2 = 1
2

m∑
j=1

(f(xj ;β)− yj)2 = 1
2

m∑
j=1

(
n∑
i=1

fi(xj)βi − yj)2

I Defining

A =

 f1(x1) · · · fn(x1)
...

f1(xm) · · · fn(xm)

 , β =

β1
...
βn

 , b =

 y1
...
ym

we can write the objective function as φ(β) = 1

2‖Aβ − b‖
2
2

Linear least squares: general formulation and matrix–vector form 34

Standard form for least squares

minimize
x

1
2 ||Ax− b||

2
2

In the context of model fitting:
I A ∈ Rm×n is the matrix that contains data from independent variables
I b ∈ Rm is the vector containing response data (β on last slide)
I x ∈ Rn is the vector of model parameters
I For each of the m training examples, the residual is we have the equation

ri = aTi x− bi,
I aT

i ∈ R1×n is the ith row of A
I Notation from statistics:

minimize
β

1
2 ||Xβ − y||22

Linear least squares: general formulation and matrix–vector form 35

CVXPY for least squares
generate input and response data
np.random.seed(1); n = 10 # number of data points
input_data = np.linspace(0,1,n)
response_data = 0.6*input_data + 0.3 + 0.1*np.random.standard_normal(n)
least-squares matrix and vector
A = np.vstack([input_data,np.ones(n)]).T; b = response_data
CVX problem
x = Variable(A.shape[1])
objective = Minimize(sum_squares(A*x - b))
prob = Problem(objective); result = prob.solve()
get value & print
x_star = np.array(x.value)
print('slope = {:.4}, intercept = {:.4}'.format(x_star[0,0],x_star[1,0]))
slope = 0.566, intercept = 0.3073

Linear least squares: general formulation and matrix–vector form 36

Examples

Examples 37

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Examples 38

What about these data?

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x: independent variable

−1.0

−0.5

0.0

0.5

1.0

1.5

y
:

re
sp

o
n

se
va

ri
ab

le

(yi, xi)

Examples 39

Polynomial regression

I Polynomial model:

y ≈ f(x;β) = β1 + β2x+ β3x
2 + · · ·+ βnx

n−1

I βi, i = 1, . . . , n are the model parameters and optimization variables
I Linear least-squares framework: f(x) =

∑n
i=1 fi(x)βi with monomials

fi(x) = xi−1, i = 1, . . . , n

Examples 40

Polynomial regression
I As before, define A, β, b to put in standard form for least squares

A =

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

1 x3 x2
3 . . . xn−1

3
1 x4 x2

4 . . . xn−1
4

...
...

...
1 xm x2

m . . . xn−1
m

, β =

β1
β2
β3
β4
...
βn

, b =

y1
y2
y3
y4
...
ym

I Solve the least-squares problem

minimize
β

1
2‖Aβ − b‖

2
2

I This form for A is called the Vandermonde matrix
Examples 41

Solve with CVXPY
I See polynomial-fit.ipynb

def cvxpy_poly_fit(x,y,degree):
construct data matrix
A = np.vander(x,degree+1)
b = y
beta_cvx = Variable(degree+1)
set up optimization problem
objective = Minimize(sum_squares(A*beta_cvx - b))
constraints = []
solve the problem
prob = Problem(objective,constraints)
prob.solve()
return the polynomial coefficients
return np.array(beta_cvx.value)

Examples 42

Linear fit

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x: independent variable

−1.0

−0.5

0.0

0.5

1.0

1.5

y
:

re
sp

o
n

se
va

ri
ab

le

linear, objective function = 6.344

Examples 43

Quadratic fit

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x: independent variable

−1.0

−0.5

0.0

0.5

1.0

1.5

y
:

re
sp

on
se

va
ri

a
b

le

linear, objective function = 6.344

degree 2, objective function = 6.3346

Examples 44

Cubic fit

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x: independent variable

−1.0

−0.5

0.0

0.5

1.0

1.5

y
:

re
sp

o
n

se
va

ri
ab

le

linear, objective function = 6.344

degree 2, objective function = 6.3346

degree 3, objective function = 1.7072

Examples 45

True model

0.5 1.0 1.5 2.0 2.5 3.0 3.5

x: independent variable

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
:

re
sp

o
n

se
va

ri
a
b

le

linear, objective function = 6.344

degree 2, objective function = 6.3346

degree 3, objective function = 1.7072

true

I This was the true (but unknown) model that generated the dataExamples 46

Example: time series smoothing

I See smooth.ipynb
I Noisy observations (xi, yi), i = 1, . . . ,m at regular intervals (discretized curve)
I New modeling approach

I We assume we don’t have a model for the curve (linear, polynomial, . . .)
I But we do believe that the curve should be smooth

I Idea: find βi, i = 1, . . . ,m that are close to yi, but are penalized for being
nonsmooth
I Linear least squares with fi(xj) = δij(xj), i = 1, . . . ,m (Kronecker delta)
I The number of optimization variables n is equal to number of data points m

Examples 47

Time series data

Examples 48

Optimization problem

I Want βi ≈ yi, i = 1, . . . ,m
I Want f(xj) =

∑n
i=1 δij(xj)βi to be smooth on the grid xj , j = 1, . . . ,m

I Optimization problem

minimize
β

||β − b||22 + ρ · penalty(β)

I Introduce a penalty function to encourage smoothness
I Penalty parameter ρ enables trading off two competing objectives:

1. ρ small: ||β − b||22 small and model is a better fit to training data
2. ρ large: penalty(β) small and model is smoother

Examples 49

How to quantify smoothness?

I Smoothness: a curve whose slope does not change much
I The second derivative measures the rate of change of the slope
I Approximate the second derivative via second-order finite differences as Dβ, where

D =

1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0
0 0 1 −2 −1 0 . . . 0
...

assuming a uniform grid xj , j = 1, . . . ,m.

Examples 50

Least squares model

I Updated optimization problem:

minimize
β

‖β − b‖22 + ρ‖Dβ‖22

I Standard form:

minimize
β

∥∥∥∥∥
(
I
ρD

)
β −

(
b
0

)∥∥∥∥∥
2

2

Examples 51

Solve the problem in CVXPY

get second-order difference matrix
D = diff(n, 2) # user-defined function
rho = 1
construct and solve problem
beta = cvx.Variable(n)
cvx.Problem(cvx.Minimize(cvx.sum_squares(beta-b)

+rho*cvx.sum_squares(D*beta))).solve()
beta = np.array(beta.value).flatten()

Examples 52

ρ = 1

Examples 53

ρ = 10

Examples 54

ρ = 1000

Examples 55

Nonlinear least squares

Nonlinear least squares 56

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Nonlinear least squares 57

Nonlinear least squares
Linear least squares:
1. Model is linear in the parameters

f(x;β) =
n∑
i=1

βifi(x)

I Linear regression: fi is also linear in x
I Nonlinear regression: fi is nonlinear in x (e.g., polynomials, exponential)

2. Minimize the residual sum of squares (RSS)
Nonlinear least squares:
1. Model f(x;β) is nonlinear in the parameters β
2. Minimize the same objective function: residual sum of squares (RSS)

I Again equivalent to maximum likelihood if additive Gaussian noise
I Algorithms: line-search (Gauss–Newton) and trust-region (Levenberg–Marquardt)

Nonlinear least squares 58

Beyond least squares

Beyond least squares 59

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Beyond least squares 60

Quadratic loss function
I See huber.ipynb
I Least squares employs a quadratic loss function

4 3 2 1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

x2

I This function imposes a severe penalty on large values
I As a result, the fit model is very sensitive to outliers (can overfit)
I Can we use a different loss function?Beyond least squares 61

Huber loss function
I The Huber function allows us to better handle outliers in data

I Usual quadratic loss in interval [−M,M]
I Linear loss for |x| > M

hM (x) =
{
x2 |x| ≤M
2M |x| −M2 |x| > M

4 3 2 1 0 1 2 3 4
0

2

4

6

8

10

12

14

16 huber function hM(x)
x2

Beyond least squares 62

Huber loss function

I This function imposes a less severe penalty on large values
I Let’s repeat the time-series example, but include extreme outliers
I Penalize closeness to data with Huber function hM to reduce outlier influence:

minimize
β

∑m
i=1 hM (βi − yi) + ρ‖Dβ‖22

I M parameter controls width of quadratic region, or “non-outlier” errors
I This is no longer least squares!
I CVXPY has implemented the Huber loss function

Beyond least squares 63

Huber data

0 25 50 75 100 125 150 175 200
5

4

3

2

1

0

1

2

3

Beyond least squares 64

Least-squares smoothing

get second-order difference matrix
D = diff(n, 2)
rho = 20

beta = Variable(n)
obj = sum_squares(beta-b) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
beta = np.array(beta.value).flatten()

Beyond least squares 65

Least-squares smoothing result

0 25 50 75 100 125 150 175 200
5

4

3

2

1

0

1

2

3

I Model overfits the outliers

Beyond least squares 66

Huber smoothing

get second-order difference matrix
D = diff(n, 2)
rho = 20
M = .15 # huber radius

beta = Variable(n)
obj = sum_entries(huber(beta-b, M)) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
x = np.array(x.value).flatten()

Beyond least squares 67

Huber smoothing result

0 25 50 75 100 125 150 175 200
5

4

3

2

1

0

1

2

3

I The model is less sensitive to outliers!

Beyond least squares 68

Deep Feedforward Networks

Deep Feedforward Networks 69

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Deep Feedforward Networks 70

Deep Feedforward Networks

A deep feedforward network defineds a particular model f(x;β)
I f(x;β) = f (3)(f (2)(f (1)(x;β1);β2);β3) is a ‘network’ (function composition)

I f (i)(x;βi): function charactering the ith layer with parameters βi

I parameters β = (β1, β2, β3) ∈ Rn

I Evaluating f is ‘forward propagation’: start at the beginning (f (1)) and evaluate
forward sequentially

I It is ‘deep’ if there are many composed functions, and thus β is high-dimensional
I f is genearlly nonlinear in the parameters β
I if additive Gaussian noise, then MLE leads to nonlinear least squares
I other loss functions possible (e.g., non-Gaussian noise); then no longer least squares

Deep Feedforward Networks 71

Deep Feedforward Networks

I Computing the gradient can be done by applying the chain rule, e.g.,

∂φ

∂β2
= ∂φ

∂f (3)
∂f (3)

∂x

∂f (2)

∂β2
,

∂φ

∂β1
= ∂φ

∂f (3)
∂f (3)

∂x

∂f (2)

∂x

∂f (1)

∂β1

I Computing the gradient is referred to as back propagation: the chain rule
‘propagates’ information from the end of the network (f (3)) upstream (e.g., to f (1))

Deep Feedforward Networks 72

Deep Feedforward Networks: optimization challenges in optimization

minimize φ(β) = 1
2
∑m
i=1(f(xi;β)− yi)2

High-dimensional
I many β parameters n (due to many layers)
I many training samples m and (need lots of data to tune many parameters)
I solution: stochastic/minibatch methods (e.g., stochastic gradient descent)

Non-convex
I can get trapped in local minima
I solution: local minima seem to yield a “low-enough” cost-function value

Ill conditioning
I solution: second-order methods (but hard for NNs)

Deep Feedforward Networks 73

Stochastic methods

Stochastic methods 74

Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Stochastic methods 75

What does ‘Big Data’ mean for model fitting?
I In model fitting, the objective function is usually composed of a sum of m

contributions:
φ(β) = 1

m

m∑
i=1

φi(β)

I φi: is the loss associated with the ith training example
I φ: a sampling-based approximation of the expected loss

I ‘Big Data’ can refer to:
I many training examples: m large
I many parameters: n large
I deep learning falls in this category!

I Specialized methods have been developed for these cases!
I stochastic/minibatch methods (next)
I distributed optimization (see ‘Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers’ by Boyd et al.)
Stochastic methods 76

Stochastic methods
Here, the gradient is also a sum of m contributions:

∇φ(β) = 1
m

m∑
i=1
∇φi(β)

I Batch methods use this within gradient-based optimization
I Benefit: Preserves traditional convergence rates
I Drawbacks:

I Requires accessing all m data points each iteration (costly)
I Many data points are likely redundant

I Can we make this less expensive yet still maintain convergence?
Observations:
1. The objective is (usually) just the sample mean of the loss function
2. Expectations via Monte Carlo sampling converge slowly (rate m−1/2)
3. Exact gradients aren’t needed for convergence

Idea: inexpensively approximate the gradient with a sample of the data
Stochastic methods 77

Stochastic methods
Stochastic methods: compute approximate the gradient as

∇φ(β) ≈ ∇φi(β)

I i is a randomly chosen training example
I Stochastic gradient descent (SGD): stochastic approximation to gradient

descent:
xi+1 = xk − αk∇φi(β)

I Benefits:
I each iteration is much cheaper
I often observe faster rate of convergence as a function of accessed data points
I a descent direction in expectation, i.e., E[∇φi(β)] = ∇φ(β)

I Drawbacks
I slower rate of convergence as a function of iteration (sublinear for SGD)
I observed slowdown as iterations progress due to noisy gradients

Stochastic methods 78

SGD performance in practice

Reference: Bottou, L., Curtis, F.E. and Nocedal, J., 2018. Optimization methods for large-scale machine learning. SIAM Review, 60(2), pp.223-311.

Stochastic methods 79

Improving the convergence rate of stochastic methods

Noise reduction: reduce variance gradient estimate
I Dynamic sampling: use minibatch estimates of the gradient at iteration k

∇φ(β) ≈ 1
|Sk|

∑
i∈Sk

∇φi(β),

where the minibatch size |Sk| increases with k.
I Gradient aggregation: reuse recently computed gradient information

I Example: stochastic variance reduced gradient (SVRD):

∇φ(β) ≈ ∇φi(β)− (∇φi(β̄)−∇φ(β̄))

I β̄: variables the last time the true batch gradient was computed

Stochastic methods 80

Improving the convergence rate of stochastic methods

Second-order methods: use sampled Hessian information
I Subsampled Hessian-Free Newton Methods: minibatch estimate of the Hessian

∇2φ(β) ≈ 1
|SHk |

∑
i∈SH

k

∇2φi(β)

I Can also enforce positive definiteness via subsampled Gauss–Newton approximations
I Subsampled Quasi-Newton Methods:

I typical quasi-Newton methods with stochastic estimates of the gradient

Stochastic methods 81

	Model fitting
	Linear least squares: 1D case with linear data
	Linear least squares: 1D case with non-linear data
	Linear least squares: general formulation and matrix–vector form
	Examples
	Nonlinear least squares
	Beyond least squares
	Deep Feedforward Networks
	Stochastic methods

