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Notation

The notation between these worlds is not consistent
I Optimization

I f : optimization objective function
I x: optimization variables

I Machine learning (this set of slides)
I φ: optimization objective function (i.e., loss function)
I β or θ: optimization variables (i.e., model parameters)
I f : regression function mapping inputs to outputs
I x: model inputs (i.e., independent variable)
I y: model outputs (i.e., response variable)
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Least-squares regression

I A type of model fitting with many applications
I Goal: find a model that best fits training data in the least-squares sense
I Illuminates the connection between unconstrained optimization and

statistics/machine learning
I We will use the following iPython notebooks

I least-squares.ipynb
I polynomial-fit.ipynb
I smooth.ipynb
I huber.ipynb

Model fitting 5



Linear least squares: 1D case with linear data

Linear least squares: 1D case with linear data 6



Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: 1D case with linear data 7



Problem set up
I Given: m training examples (i.e., training set)

xi: independent variable yi: response variable
0.0 0.46
0.11 0.31
0.22 0.38
0.33 0.39
0.44 0.65
0.56 0.40
0.67 0.87
0.78 0.69
0.89 0.87
1.0 0.88

I Goal: construct a model that can predict y from x
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Where might these data come from?

x: independent variable y: response variable
height weight

square feet price of home
device property failure rate

stock market return individual asset return
I Regression can be applied regardless of the origin of the data!
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Regression: Approach
Goal: construct a model that can predict y from x

I In general, we do not know the mathematical model characterizing the underlying
process that actually generated the data

I So, we assume that the data were generated from a model comprising the sum of a
(deterministic) function and (stochastic) iid Gaussian noise:

yi = ftrue(xi) + σ · εi, i = 1, . . . ,m

with ftrue(xi) unknown and εi ∼ N(0, 1)
I We aim to construct f(x) such that f(x) ≈ ftrue(x) in some sense
I This is known as regression and is performed via optimization

I objective function: residual sum of squares 1
2
∑m

i=1(f(xi)− yi)2

I optimization variables: parameters within the assumed form of f(x)
I Then, we can make predictions y ≈ f(x) for new values of x.
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Follow along in Python

I See least-squares.ipynb
I In this case, we have set ftrue(x) = θtrue · xi + btrue and σ = 0.1

I θtrue = 0.6
I btrue = 0.3

I Run the first three cells of least-squares.ipynb
I Python code to generate data (in second cell):

np.random.seed(1)
theta = 0.6
b = 0.3
sigma = .1
x = np.linspace(0,1,10)
y = theta*x + b + sigma*np.random.standard_normal(x.shape)
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Plot the data
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The residuals

I Any given data point will result in some error or residual

ri = f(xi)− yi

I Due to the Gaussian noise, yi = ftrue(xi) + σ · εi 6= ftrue(xi). Thus, the true
function ftrue(x) will yield residuals

rtrue,i = ftrue(xi)− yi = −σ · εi
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The residuals for ftrue(x)
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Linear regression in one dimension

I In linear regression, we enforce the regression function f(x) to be linear

f(x; θ, b) = θ · x+ b

I regression function has two parameters: the slope θ and the y-intercept b
I semicolon separates model input from model parameters

I Note: the form of f(x) usually does not match the (generally unknown) form of
ftrue(x). We are lucky if this happens!
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Fit the model via optimization

I Given training data (xi, yi)mi=1 with xi ∈ R and yi ∈ R
I To fit the model, construct an optimization problem

minimize
θ,b

φ(θ, b) = 1
2
∑m
i=1 ri(θ, b)2 = 1

2
∑m
i=1(f(xi; θ, b)− yi)2

I Optimization objective function: residual sum of squares (RSS)
I one contribution from each of the m training examples

I Optimization variables: parameters θ and b
I If the true underlying model actually is yi = θtrue · xi + btrue + σ · εi with εi

mean-zero Gaussian, then θ and b are the maximum-likelihood estimates of θtrue
and btrue
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Objective function
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I The objective function φ(θ, b) is appears to be convex (it is!)
I The global minimum occurs around θ? ≈ 0.6 and b? ≈ 0.35
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Optimizing by hand

Recall the sufficient conditions for (unconstrained) optimality:
1. ∇φ(θ?, b?) = 0
2. ∇2φ(θ?, b?) � 0. This holds everywhere!

I The objective function is strongly convex
I This simplifies things: we only need to find a stationary point satisfying condition 1
I This is one reason why convex optimization is so nice!

Let’s compute θ? and b? such that that the first condition holds.
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Compute gradient analytically and set to zero
Analytical gradient computation:

∂φ

∂θ
= 1

2

m∑
i=1

∂

∂θ
(θ · xi + b− yi)2 = θ

∑
x2
i + b

∑
xi −

∑
xiyi

∂φ

∂b
= 1

2

m∑
i=1

∂

∂b
(θ · xi + b− yi)2 = θ

∑
xi + nb−

∑
yi

Set analytical gradient to zero and obtain a system of equations:

∂φ

∂θ
= 0

∂φ

∂b
= 0
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Solution

θ =
∑
xiyi − 1

m

∑
xi
∑
yi∑

x2
i − 1

m(
∑
xi)2

b =
∑
yi − θ

∑
xi

m
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Let’s look at θ
Something looks nice here:

θ =
∑
xiyi − 1

m

∑
xi
∑
yi∑

x2
i − 1

m(
∑
xi)2

Multiply both numerator and denominator by 1/m:

θ =
1
m

∑
xiyi − 1

m

∑
xi

1
m

∑
yi

1
m

∑
x2
i − ( 1

m

∑
xi)2

We see sample covariance and variance here!

θ = cov(X,Y )
var(X)
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Let’s solve in Python!

Code:
# solve via numpy covariance function
A = np.vstack((x,y))
V = np.cov(A)
theta_est = V[0,1] / V[0,0]
b_est = (y.sum() - theta_est*x.sum()) / len(x)
print(theta_est)
print(b_est)
Result:
theta_est = 0.56604 (true value = 0.6)
b_est = 0.30727 (true value = 0.3)
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Look at the plot
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Solve in CVXPY

Remember the optimization problem: minimize 1
2
∑m
i=1(θ · xi + b− yi)2

We can write this directly in CVXPY:
from cvxpy import *
# Construct the problem.
theta_cvx = Variable()
b_cvx = Variable()
objective = Minimize(sum_squares(theta_cvx*x + b_cvx - y))
prob = Problem(objective)
# The optimal objective is returned by prob.solve().
result = prob.solve()
theta_cvx.value = 0.56604, b_cvx.value = 0.30727
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Linear least squares: 1D case with non-linear data
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What about these data?
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I Here, ftrue(x) = θtrue exp(x) + btrue, which we do not know
I We just have access to the data!
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We could fit a linear model
I Given our ignorance of ftrue, we could fit a linear model

f(x; θ, b) = θ · x+ b,
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I This yields an objective-function value of φ(θ, b) = 283.63
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We can also fit an exponential model
I If we think that the underlying model may be exponential, we can also try

f(x; θ, b) = θ · exp(x) + b

I Model still linear in the parameters θ and b: “Linear least squares” (same
optimization problem)

I But model nonlinear in the parameters: “Nonlinear regression”

CVXPY code:
theta = Variable()
b = Variable()
objective = Minimize(sum_squares(theta*np.exp(x) + b - y))
prob = Problem(objective)
result = prob.solve()
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Result
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I This yields a smaller objective-function value of φ(θ, b) = 122.80
I better fit to training data

I Caution: can overfit training data
I must assess generalization error on an independent test set
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Linear least squares: general formulation and matrix–vector form
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General formulation for linear least squares

I x ∈ Rp: p-dimensional model inputs (i.e., independent variables)
I y ∈ R: model outputs (i.e., response variable)
I f : Rp → R: model a linear combination of n functions fi : Rn → R, i = 1, . . . , n:

f(x;β) =
n∑
i=1

fi(x)βi

I If fi is nonlinear in x, then this is “nonlinear regression”
I Previous example: m = 2; f1(x) = 1; f2(x) = x or f2(x) = exp(x); β1 = θ, β2 = m

I β = (β1, . . . , βn) ∈ Rn: optimization variables (i.e., model parameters)
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Matrix–vector form
I Assume input–output data of the form (xj , yj)mj=1
I The residual for the jth data point is rj(β) = f(xj ;β)− yj
I Residual sum of squares (RSS) objective function is

φ(β) = 1
2

m∑
j=1

rj(β)2 = 1
2

m∑
j=1

(f(xj ;β)− yj)2 = 1
2

m∑
j=1

(
n∑
i=1

fi(xj)βi − yj)2

I Defining

A =

 f1(x1) · · · fn(x1)
... . . . ...

f1(xm) · · · fn(xm)

 , β =

β1
...
βn

 , b =

 y1
...
ym


we can write the objective function as φ(β) = 1

2‖Aβ − b‖
2
2
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Standard form for least squares

minimize
x

1
2 ||Ax− b||

2
2

In the context of model fitting:
I A ∈ Rm×n is the matrix that contains data from independent variables
I b ∈ Rm is the vector containing response data (β on last slide)
I x ∈ Rn is the vector of model parameters
I For each of the m training examples, the residual is we have the equation

ri = aTi x− bi,
I aT

i ∈ R1×n is the ith row of A
I Notation from statistics:

minimize
β

1
2 ||Xβ − y||22
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CVXPY for least squares
# generate input and response data
np.random.seed(1); n = 10 # number of data points
input_data = np.linspace(0,1,n)
response_data = 0.6*input_data + 0.3 + 0.1*np.random.standard_normal(n)
# least-squares matrix and vector
A = np.vstack([input_data,np.ones(n)]).T; b = response_data
# CVX problem
x = Variable(A.shape[1])
objective = Minimize(sum_squares(A*x - b))
prob = Problem(objective); result = prob.solve()
# get value & print
x_star = np.array(x.value)
print('slope = {:.4}, intercept = {:.4}'.format(x_star[0,0],x_star[1,0]))
slope = 0.566, intercept = 0.3073
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What about these data?
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Polynomial regression

I Polynomial model:

y ≈ f(x;β) = β1 + β2x+ β3x
2 + · · ·+ βnx

n−1

I βi, i = 1, . . . , n are the model parameters and optimization variables
I Linear least-squares framework: f(x) =

∑n
i=1 fi(x)βi with monomials

fi(x) = xi−1, i = 1, . . . , n

Examples 40



Polynomial regression
I As before, define A, β, b to put in standard form for least squares

A =



1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

1 x3 x2
3 . . . xn−1

3
1 x4 x2

4 . . . xn−1
4

...
...

... . . . ...
1 xm x2

m . . . xn−1
m


, β =



β1
β2
β3
β4
...
βn


, b =



y1
y2
y3
y4
...
ym


I Solve the least-squares problem

minimize
β

1
2‖Aβ − b‖

2
2

I This form for A is called the Vandermonde matrix
Examples 41



Solve with CVXPY
I See polynomial-fit.ipynb

def cvxpy_poly_fit(x,y,degree):
# construct data matrix
A = np.vander(x,degree+1)
b = y
beta_cvx = Variable(degree+1)
# set up optimization problem
objective = Minimize(sum_squares(A*beta_cvx - b))
constraints = []
# solve the problem
prob = Problem(objective,constraints)
prob.solve()
# return the polynomial coefficients
return np.array(beta_cvx.value)
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Linear fit
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Quadratic fit
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Cubic fit
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True model
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I This was the true (but unknown) model that generated the dataExamples 46



Example: time series smoothing

I See smooth.ipynb
I Noisy observations (xi, yi), i = 1, . . . ,m at regular intervals (discretized curve)
I New modeling approach

I We assume we don’t have a model for the curve (linear, polynomial, . . . )
I But we do believe that the curve should be smooth

I Idea: find βi, i = 1, . . . ,m that are close to yi, but are penalized for being
nonsmooth
I Linear least squares with fi(xj) = δij(xj), i = 1, . . . ,m (Kronecker delta)
I The number of optimization variables n is equal to number of data points m
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Time series data

Examples 48



Optimization problem

I Want βi ≈ yi, i = 1, . . . ,m
I Want f(xj) =

∑n
i=1 δij(xj)βi to be smooth on the grid xj , j = 1, . . . ,m

I Optimization problem

minimize
β

||β − b||22 + ρ · penalty(β)

I Introduce a penalty function to encourage smoothness
I Penalty parameter ρ enables trading off two competing objectives:

1. ρ small: ||β − b||22 small and model is a better fit to training data
2. ρ large: penalty(β) small and model is smoother
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How to quantify smoothness?

I Smoothness: a curve whose slope does not change much
I The second derivative measures the rate of change of the slope
I Approximate the second derivative via second-order finite differences as Dβ, where

D =


1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0
0 0 1 −2 −1 0 . . . 0
...


assuming a uniform grid xj , j = 1, . . . ,m.
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Least squares model

I Updated optimization problem:

minimize
β

‖β − b‖22 + ρ‖Dβ‖22

I Standard form:

minimize
β

∥∥∥∥∥
(
I
ρD

)
β −

(
b
0

)∥∥∥∥∥
2

2
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Solve the problem in CVXPY

# get second-order difference matrix
D = diff(n, 2) # user-defined function
rho = 1
# construct and solve problem
beta = cvx.Variable(n)
cvx.Problem(cvx.Minimize(cvx.sum_squares(beta-b)

+rho*cvx.sum_squares(D*beta))).solve()
beta = np.array(beta.value).flatten()
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ρ = 1
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ρ = 10
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ρ = 1000
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Nonlinear least squares
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Nonlinear least squares
Linear least squares:
1. Model is linear in the parameters

f(x;β) =
n∑
i=1

βifi(x)

I Linear regression: fi is also linear in x
I Nonlinear regression: fi is nonlinear in x (e.g., polynomials, exponential)

2. Minimize the residual sum of squares (RSS)
Nonlinear least squares:
1. Model f(x;β) is nonlinear in the parameters β
2. Minimize the same objective function: residual sum of squares (RSS)

I Again equivalent to maximum likelihood if additive Gaussian noise
I Algorithms: line-search (Gauss–Newton) and trust-region (Levenberg–Marquardt)
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Beyond least squares
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Quadratic loss function
I See huber.ipynb
I Least squares employs a quadratic loss function
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I This function imposes a severe penalty on large values
I As a result, the fit model is very sensitive to outliers (can overfit)
I Can we use a different loss function?Beyond least squares 61



Huber loss function
I The Huber function allows us to better handle outliers in data

I Usual quadratic loss in interval [−M,M ]
I Linear loss for |x| > M

hM (x) =
{
x2 |x| ≤M
2M |x| −M2 |x| > M
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Huber loss function

I This function imposes a less severe penalty on large values
I Let’s repeat the time-series example, but include extreme outliers
I Penalize closeness to data with Huber function hM to reduce outlier influence:

minimize
β

∑m
i=1 hM (βi − yi) + ρ‖Dβ‖22

I M parameter controls width of quadratic region, or “non-outlier” errors
I This is no longer least squares!
I CVXPY has implemented the Huber loss function

Beyond least squares 63



Huber data
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Least-squares smoothing

# get second-order difference matrix
D = diff(n, 2)
rho = 20

beta = Variable(n)
obj = sum_squares(beta-b) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
beta = np.array(beta.value).flatten()
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Least-squares smoothing result
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I Model overfits the outliers
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Huber smoothing

# get second-order difference matrix
D = diff(n, 2)
rho = 20
M = .15 # huber radius

beta = Variable(n)
obj = sum_entries(huber(beta-b, M)) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
x = np.array(x.value).flatten()
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Huber smoothing result
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I The model is less sensitive to outliers!
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Deep Feedforward Networks

A deep feedforward network defineds a particular model f(x;β)
I f(x;β) = f (3)(f (2)(f (1)(x;β1);β2);β3) is a ‘network’ (function composition)

I f (i)(x;βi): function charactering the ith layer with parameters βi

I parameters β = (β1, β2, β3) ∈ Rn

I Evaluating f is ‘forward propagation’: start at the beginning (f (1)) and evaluate
forward sequentially

I It is ‘deep’ if there are many composed functions, and thus β is high-dimensional
I f is genearlly nonlinear in the parameters β
I if additive Gaussian noise, then MLE leads to nonlinear least squares
I other loss functions possible (e.g., non-Gaussian noise); then no longer least squares
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Deep Feedforward Networks

I Computing the gradient can be done by applying the chain rule, e.g.,

∂φ

∂β2
= ∂φ

∂f (3)
∂f (3)

∂x

∂f (2)

∂β2
,

∂φ

∂β1
= ∂φ

∂f (3)
∂f (3)

∂x

∂f (2)

∂x

∂f (1)

∂β1

I Computing the gradient is referred to as back propagation: the chain rule
‘propagates’ information from the end of the network (f (3)) upstream (e.g., to f (1))
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Deep Feedforward Networks: optimization challenges in optimization

minimize φ(β) = 1
2
∑m
i=1(f(xi;β)− yi)2

High-dimensional
I many β parameters n (due to many layers)
I many training samples m and (need lots of data to tune many parameters)
I solution: stochastic/minibatch methods (e.g., stochastic gradient descent)

Non-convex
I can get trapped in local minima
I solution: local minima seem to yield a “low-enough” cost-function value

Ill conditioning
I solution: second-order methods (but hard for NNs)

Deep Feedforward Networks 73



Stochastic methods

Stochastic methods 74



Outline
Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Stochastic methods 75



What does ‘Big Data’ mean for model fitting?
I In model fitting, the objective function is usually composed of a sum of m

contributions:
φ(β) = 1

m

m∑
i=1

φi(β)

I φi: is the loss associated with the ith training example
I φ: a sampling-based approximation of the expected loss

I ‘Big Data’ can refer to:
I many training examples: m large
I many parameters: n large
I deep learning falls in this category!

I Specialized methods have been developed for these cases!
I stochastic/minibatch methods (next)
I distributed optimization (see ‘Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers’ by Boyd et al.)
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Stochastic methods
Here, the gradient is also a sum of m contributions:

∇φ(β) = 1
m

m∑
i=1
∇φi(β)

I Batch methods use this within gradient-based optimization
I Benefit: Preserves traditional convergence rates
I Drawbacks:

I Requires accessing all m data points each iteration (costly)
I Many data points are likely redundant

I Can we make this less expensive yet still maintain convergence?
Observations:
1. The objective is (usually) just the sample mean of the loss function
2. Expectations via Monte Carlo sampling converge slowly (rate m−1/2)
3. Exact gradients aren’t needed for convergence

Idea: inexpensively approximate the gradient with a sample of the data
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Stochastic methods
Stochastic methods: compute approximate the gradient as

∇φ(β) ≈ ∇φi(β)

I i is a randomly chosen training example
I Stochastic gradient descent (SGD): stochastic approximation to gradient

descent:
xi+1 = xk − αk∇φi(β)

I Benefits:
I each iteration is much cheaper
I often observe faster rate of convergence as a function of accessed data points
I a descent direction in expectation, i.e., E[∇φi(β)] = ∇φ(β)

I Drawbacks
I slower rate of convergence as a function of iteration (sublinear for SGD)
I observed slowdown as iterations progress due to noisy gradients
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SGD performance in practice

Reference: Bottou, L., Curtis, F.E. and Nocedal, J., 2018. Optimization methods for large-scale machine learning. SIAM Review, 60(2), pp.223-311.

Stochastic methods 79



Improving the convergence rate of stochastic methods

Noise reduction: reduce variance gradient estimate
I Dynamic sampling: use minibatch estimates of the gradient at iteration k

∇φ(β) ≈ 1
|Sk|

∑
i∈Sk

∇φi(β),

where the minibatch size |Sk| increases with k.
I Gradient aggregation: reuse recently computed gradient information

I Example: stochastic variance reduced gradient (SVRD):

∇φ(β) ≈ ∇φi(β)− (∇φi(β̄)−∇φ(β̄))

I β̄: variables the last time the true batch gradient was computed
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Improving the convergence rate of stochastic methods

Second-order methods: use sampled Hessian information
I Subsampled Hessian-Free Newton Methods: minibatch estimate of the Hessian

∇2φ(β) ≈ 1
|SHk |

∑
i∈SH

k

∇2φi(β)

I Can also enforce positive definiteness via subsampled Gauss–Newton approximations
I Subsampled Quasi-Newton Methods:

I typical quasi-Newton methods with stochastic estimates of the gradient
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