Optimization for Machine Learning

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019
Model fitting
Outline

Model fitting

Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data
Linear least squares: general formulation and matrix–vector form
Examples
Nonlinear least squares
Beyond least squares
Deep Feedforward Networks
Stochastic methods
The notation between these worlds is not consistent

- **Optimization**
 - f: optimization objective function
 - x: optimization variables

- **Machine learning (this set of slides)**
 - ϕ: optimization objective function (i.e., loss function)
 - β or θ: optimization variables (i.e., model parameters)
 - f: regression function mapping inputs to outputs
 - x: model inputs (i.e., independent variable)
 - y: model outputs (i.e., response variable)
Least-squares regression

- A type of model fitting with many applications
- **Goal**: find a model that best fits training data in the least-squares sense
- Illuminates the connection between \textit{unconstrained optimization} and \textit{statistics/machine learning}
- We will use the following iPython notebooks
 - `least-squares.ipynb`
 - `polynomial-fit.ipynb`
 - `smooth.ipynb`
 - `huber.ipynb`
Linear least squares: 1D case with linear data
Outline

Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: 1D case with linear data
Problem set up

▶ **Given**: \(m \) training examples (i.e., training set)

<table>
<thead>
<tr>
<th>(x_i): independent variable</th>
<th>(y_i): response variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.46</td>
</tr>
<tr>
<td>0.11</td>
<td>0.31</td>
</tr>
<tr>
<td>0.22</td>
<td>0.38</td>
</tr>
<tr>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td>0.44</td>
<td>0.65</td>
</tr>
<tr>
<td>0.56</td>
<td>0.40</td>
</tr>
<tr>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>0.78</td>
<td>0.69</td>
</tr>
<tr>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>1.0</td>
<td>0.88</td>
</tr>
</tbody>
</table>

▶ **Goal**: construct a model that can predict \(y \) from \(x \)
Where might these data come from?

- x: independent variable
- y: response variable

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>height</td>
<td>weight</td>
</tr>
<tr>
<td>square feet</td>
<td>price of home</td>
</tr>
<tr>
<td>device property</td>
<td>failure rate</td>
</tr>
<tr>
<td>stock market return</td>
<td>individual asset return</td>
</tr>
</tbody>
</table>

Regression can be applied regardless of the origin of the data!
Regression: Approach

Goal: construct a model that can predict y from x

- In general, we *do not* know the mathematical model characterizing the underlying process that actually generated the data
- So, we *assume* that the data were generated from a model comprising the sum of a (deterministic) function and (stochastic) iid Gaussian noise:

\[
y_i = f_{\text{true}}(x_i) + \sigma \cdot \epsilon_i, \quad i = 1, \ldots, m
\]

with $f_{\text{true}}(x_i)$ unknown and $\epsilon_i \sim N(0, 1)$

- We aim to construct $f(x)$ such that $f(x) \approx f_{\text{true}}(x)$ in some sense
- This is known as *regression* and is performed via optimization
- **objective function:** residual sum of squares $\frac{1}{2} \sum_{i=1}^{m} (f(x_i) - y_i)^2$
- **optimization variables:** parameters within the assumed form of $f(x)$
- Then, we can make predictions $y \approx f(x)$ for new values of x.

Linear least squares: 1D case with linear data
Follow along in Python

- See `least-squares.ipynb`
- In this case, we have set \(f_{\text{true}}(x) = \theta_{\text{true}} \cdot x_i + b_{\text{true}} \) and \(\sigma = 0.1 \)
 - \(\theta_{\text{true}} = 0.6 \)
 - \(b_{\text{true}} = 0.3 \)
- Run the first three cells of `least-squares.ipynb`
- Python code to generate data (in second cell):

```python
np.random.seed(1)
theta = 0.6
b = 0.3
sigma = .1
x = np.linspace(0,1,10)
y = theta*x + b + sigma*np.random.standard_normal(x.shape)
```
Plot the data

\[f_{\text{true}}(x) \quad f_{\text{true}}(x_i) + \sigma \epsilon_i \]

Linear least squares: 1D case with linear data
The residuals

- Any given data point will result in some error or residual
 \[r_i = f(x_i) - y_i \]

- Due to the Gaussian noise, \(y_i = f_{\text{true}}(x_i) + \sigma \cdot \epsilon_i \neq f_{\text{true}}(x_i) \). Thus, the true function \(f_{\text{true}}(x) \) will yield residuals
 \[r_{\text{true},i} = f_{\text{true}}(x_i) - y_i = -\sigma \cdot \epsilon_i \]
The residuals for $f_{\text{true}}(x)$
Linear regression in one dimension

In linear regression, we enforce the regression function $f(x)$ to be linear

$$f(x; \theta, b) = \theta \cdot x + b$$

- regression function has two parameters: the slope θ and the y-intercept b
- semicolon separates model input from model parameters

Note: the form of $f(x)$ usually does not match the (generally unknown) form of $f_{\text{true}}(x)$. We are lucky if this happens!
Fit the model via optimization

- Given training data $(x_i, y_i)_{i=1}^{m}$ with $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$
- To fit the model, construct an optimization problem

$$\min_{\theta, b} \phi(\theta, b) = \frac{1}{2} \sum_{i=1}^{m} r_i(\theta, b)^2 = \frac{1}{2} \sum_{i=1}^{m} (f(x_i; \theta, b) - y_i)^2$$

- **Optimization objective function**: residual sum of squares (RSS)
 - one contribution from each of the m training examples
- **Optimization variables**: parameters θ and b
- If the true underlying model actually is $y_i = \theta_{\text{true}} \cdot x_i + b_{\text{true}} + \sigma \cdot \epsilon_i$ with ϵ_i mean-zero Gaussian, then θ and b are the maximum-likelihood estimates of θ_{true} and b_{true}
Objective function

- The objective function $\phi(\theta, b)$ is appears to be convex (it is!)
- The global minimum occurs around $\theta^* \approx 0.6$ and $b^* \approx 0.35$
Recall the sufficient conditions for (unconstrained) optimality:

1. $\nabla \phi(\theta^*, b^*) = 0$
2. $\nabla^2 \phi(\theta^*, b^*) \succ 0$. **This holds everywhere!**
 - The objective function is strongly convex
 - This simplifies things: we only need to find a stationary point satisfying condition 1
 - This is one reason why convex optimization is so nice!

Let’s compute θ^* and b^* such that the first condition holds.
Compute gradient analytically and set to zero

Analytical gradient computation:

\[
\frac{\partial \phi}{\partial \theta} = \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial \theta} (\theta \cdot x_i + b - y_i)^2 = \theta \sum x_i^2 + b \sum x_i - \sum x_i y_i
\]

\[
\frac{\partial \phi}{\partial b} = \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial b} (\theta \cdot x_i + b - y_i)^2 = \theta \sum x_i + nb - \sum y_i
\]

Set analytical gradient to zero and obtain a system of equations:

\[
\frac{\partial \phi}{\partial \theta} = 0
\]

\[
\frac{\partial \phi}{\partial b} = 0
\]
Solution

\[
\theta = \frac{\sum x_i y_i - \frac{1}{m} \sum x_i \sum y_i}{\sum x_i^2 - \frac{1}{m} (\sum x_i)^2}
\]

\[
b = \frac{\sum y_i - \theta \sum x_i}{m}
\]
Let’s look at θ

Something looks nice here:

$$\theta = \frac{\sum x_i y_i - \frac{1}{m} \sum x_i \sum y_i}{\sum x_i^2 - \frac{1}{m} (\sum x_i)^2}$$

Multiply both numerator and denominator by $1/m$:

$$\theta = \frac{\frac{1}{m} \sum x_i y_i - \frac{1}{m} \sum x_i \frac{1}{m} \sum y_i}{\frac{1}{m} \sum x_i^2 - \left(\frac{1}{m} \sum x_i\right)^2}$$

We see sample covariance and variance here!

$$\theta = \frac{\text{cov}(X, Y)}{\text{var}(X)}$$
Let’s solve in Python!

Code:

```python
# solve via numpy covariance function
A = np.vstack((x,y))
V = np.cov(A)
theta_est = V[0,1] / V[0,0]
b_est = (y.sum() - theta_est*x.sum()) / len(x)
print(theta_est)
print(b_est)
```

Result:

```
theta_est = 0.56604 (true value = 0.6)
b_est = 0.30727 (true value = 0.3)
```
Look at the plot
Solve in CVXPY

Remember the optimization problem: minimize \(\frac{1}{2} \sum_{i=1}^{m} (\theta \cdot x_i + b - y_i)^2 \)

We can write this directly in CVXPY:

```python
from cvxpy import *

# Construct the problem.
theta_cvx = Variable()
b_cvx = Variable()
objective = Minimize(sum_squares(theta_cvx*x + b_cvx - y))
prob = Problem(objective)
# The optimal objective is returned by prob.solve().
result = prob.solve()
theta_cvx.value = 0.56604, b_cvx.value = 0.30727
```
Linear least squares: 1D case with non-linear data
Outline

Model fitting

Linear least squares: 1D case with linear data

Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Linear least squares: 1D case with non-linear data 26
What about these data?

Here, $f_{\text{true}}(x) = \theta_{\text{true}} \exp(x) + b_{\text{true}}$, which we do not know.

We just have access to the data!
We could fit a linear model

- Given our ignorance of f_{true}, we could fit a linear model

$$f(x; \theta, b) = \theta \cdot x + b,$$

- This yields an objective-function value of $\phi(\theta, b) = 283.63$
We can also fit an exponential model

- If we think that the underlying model may be exponential, we can also try

\[f(x; \theta, b) = \theta \cdot \exp(x) + b \]

- Model still **linear in the parameters** \(\theta \) and \(b \): “Linear least squares” (same optimization problem)
- But model **nonlinear in the parameters**: “Nonlinear regression”

CVXPY code:

```python
theta = Variable()
b = Variable()
objective = Minimize(sum_squares(theta*np.exp(x) + b - y))
prob = Problem(objective)
result = prob.solve()
```

Linear least squares: 1D case with non-linear data
This yields a *smaller* objective-function value of $\phi(\theta, b) = 122.80$

- better fit to training data

Caution: can overfit training data

- must assess generalization error on an independent test set
Outline

Model fitting

Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data

Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares
Beyond least squares
Deep Feedforward Networks
Stochastic methods
General formulation for linear least squares

- $x \in \mathbb{R}^p$: p-dimensional model inputs (i.e., independent variables)
- $y \in \mathbb{R}$: model outputs (i.e., response variable)
- $f : \mathbb{R}^p \rightarrow \mathbb{R}$: model a linear combination of n functions $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$, $i = 1, \ldots, n$:
 \[f(x; \beta) = \sum_{i=1}^{n} f_i(x) \beta_i \]

- If f_i is nonlinear in x, then this is “nonlinear regression”
- Previous example: $m = 2$; $f_1(x) = 1$; $f_2(x) = x$ or $f_2(x) = \exp(x)$; $\beta_1 = \theta$, $\beta_2 = m$
- $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{R}^n$: optimization variables (i.e., model parameters)
Matrix-vector form

- Assume input–output data of the form \((x_j, y_j)_{j=1}^m\)
- The residual for the \(j\)th data point is \(r_j(\beta) = f(x_j; \beta) - y_j\)
- Residual sum of squares (RSS) objective function is

\[
\phi(\beta) = \frac{1}{2} \sum_{j=1}^m r_j(\beta)^2 = \frac{1}{2} \sum_{j=1}^m (f(x_j; \beta) - y_j)^2 = \frac{1}{2} \sum_{j=1}^m \left(\sum_{i=1}^n f_i(x_j) \beta_i - y_j \right)^2
\]

- Defining

\[
A = \begin{bmatrix} f_1(x_1) & \cdots & f_n(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_m) & \cdots & f_n(x_m) \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}
\]

we can write the objective function as

\[
\phi(\beta) = \frac{1}{2} \| A\beta - b \|_2^2
\]
Standard form for least squares

\[
\text{minimize } \frac{1}{2} \| Ax - b \|_2^2
\]

In the context of model fitting:

- \(A \in \mathbb{R}^{m \times n} \) is the matrix that contains data from independent variables
- \(b \in \mathbb{R}^m \) is the vector containing response data (\(\beta \) on last slide)
- \(x \in \mathbb{R}^n \) is the vector of model parameters
- For each of the \(m \) training examples, the residual is we have the equation
 \[
 r_i = a_i^T x - b_i,
 \]
 - \(a_i^T \in \mathbb{R}^{1 \times n} \) is the \(i \)th row of \(A \)
- Notation from statistics:

\[
\text{minimize } \frac{1}{2} \| X \beta - y \|_2^2
\]
CVXPY for least squares

generate input and response data
np.random.seed(1); n = 10 # number of data points
input_data = np.linspace(0,1,n)
response_data = 0.6*input_data + 0.3 + 0.1*np.random.standard_normal(n)

least-squares matrix and vector
A = np.vstack([input_data,np.ones(n)]).T; b = response_data

CVX problem
x = Variable(A.shape[1])
objective = Minimize(sum_squares(A*x - b))
prob = Problem(objective); result = prob.solve()

get value & print
x_star = np.array(x.value)
print('slope = {:.4}, intercept = {:.4}'.format(x_star[0,0],x_star[1,0]))
slope = 0.566, intercept = 0.3073
Examples
Outline

Model fitting

Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data
Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares
Beyond least squares
Deep Feedforward Networks
Stochastic methods
What about these data?

Examples
Polynomial regression

- Polynomial model:

\[y \approx f(x; \beta) = \beta_1 + \beta_2 x + \beta_3 x^2 + \cdots + \beta_n x^{n-1} \]

- $\beta_i, i = 1, \ldots, n$ are the model parameters and optimization variables
- Linear least-squares framework: \(f(x) = \sum_{i=1}^{n} f_i(x) \beta_i \) with monomials

\[f_i(x) = x^{i-1}, \ i = 1, \ldots, n \]
Polynomial regression

As before, define A, β, b to put in standard form for least squares

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ 1 & x_4 & x_4^2 & \cdots & x_4^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \vdots \\ \beta_n \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ \vdots \\ y_m \end{bmatrix}$$

Solve the least-squares problem

$$\minimize_{\beta} \frac{1}{2} \| A\beta - b \|_2^2$$

This form for A is called the **Vandermonde matrix**

Examples
def cvxpy_poly_fit(x, y, degree):
 # construct data matrix
 A = np.vander(x, degree+1)
 b = y
 beta_cvx = Variable(degree+1)
 # set up optimization problem
 objective = Minimize(sum_squares(A*beta_cvx - b))
 constraints = []
 # solve the problem
 prob = Problem(objective, constraints)
 prob.solve()
 # return the polynomial coefficients
 return np.array(beta_cvx.value)
Linear fit

Examples
Quadratic fit

Examples
Cubic fit

Examples
This was the true (but unknown) model that generated the data.
Example: time series smoothing

- See smooth.ipynb
- Noisy observations \((x_i, y_i), i = 1, \ldots, m\) at regular intervals (discretized curve)
- New modeling approach
 - We assume we don’t have a model for the curve (linear, polynomial, …)
 - But we do believe that the curve should be smooth
- Idea: find \(\beta_i, i = 1, \ldots, m\) that are close to \(y_i\), but are penalized for being nonsmooth
 - Linear least squares with \(f_i(x_j) = \delta_{ij}(x_j), i = 1, \ldots, m\) (Kronecker delta)
 - The number of optimization variables \(n\) is equal to number of data points \(m\)
Time series data

y: response variable

x: independent variable

y_i
Optimization problem

- Want $\beta_i \approx y_i$, $i = 1, \ldots, m$
- Want $f(x_j) = \sum_{i=1}^{n} \delta_{ij}(x_j)\beta_i$ to be smooth on the grid x_j, $j = 1, \ldots, m$
- Optimization problem

$$\min_{\beta} ||\beta - b||_2^2 + \rho \cdot \text{penalty}(\beta)$$

- Introduce a penalty function to encourage smoothness
- Penalty parameter ρ enables trading off two competing objectives:
 1. ρ small: $||\beta - b||_2^2$ small and model is a better fit to training data
 2. ρ large: $\text{penalty}(\beta)$ small and model is smoother
How to quantify smoothness?

- Smoothness: a curve whose *slope does not change much*
- The second derivative measures the rate of change of the slope
- Approximate the second derivative via second-order finite differences as $D\beta$, where

$$D = \begin{pmatrix}
1 & -2 & 1 & 0 & \ldots & 0 \\
0 & 1 & -2 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & -2 & -1 & 0 & \ldots & 0 \\
\vdots & \vdots
\end{pmatrix}$$

assuming a uniform grid $x_j, j = 1, \ldots, m$.
Least squares model

- Updated optimization problem:
 \[
 \min_{\beta} \|\beta - b\|_2^2 + \rho \|D\beta\|_2^2
 \]

- Standard form:
 \[
 \min_{\beta} \left\|\begin{pmatrix} I \\ \rho D \end{pmatrix} \beta - \begin{pmatrix} b \\ 0 \end{pmatrix}\right\|_2^2
 \]
Solve the problem in CVXPY

```python
# get second-order difference matrix
D = diff(n, 2)  # user-defined function
rho = 1

# construct and solve problem
beta = cvx.Variable(n)
cvx.Problem(cvx.Minimize(cvx.sum_squares(beta-b)
                     + rho*cvx.sum_squares(D*beta))).solve()
beta = np.array(beta.value).flatten()
```
\[\rho = 1 \]
$\rho = 10$

Example 54
\[\rho = 1000 \]
Nonlinear least squares
Outline

Model fitting

Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data
Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares

Deep Feedforward Networks

Stochastic methods

Nonlinear least squares
Nonlinear least squares

Linear least squares:

1. Model is *linear in the parameters*

 \[
 f(x; \beta) = \sum_{i=1}^{n} \beta_i f_i(x)
 \]

 - *Linear regression*: \(f_i \) is also linear in \(x \)
 - *Nonlinear regression*: \(f_i \) is nonlinear in \(x \) (e.g., polynomials, exponential)

2. Minimize the residual sum of squares (RSS)

Nonlinear least squares:

1. Model \(f(x; \beta) \) is *nonlinear in the parameters* \(\beta \)

2. Minimize the same objective function: residual sum of squares (RSS)

 - Again equivalent to maximum likelihood if additive Gaussian noise
 - Algorithms: line-search (Gauss–Newton) and trust-region (Levenberg–Marquardt)
Beyond least squares
Outline

Model fitting
- Linear least squares: 1D case with linear data
- Linear least squares: 1D case with non-linear data
- Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares

Beyond least squares
- Deep Feedforward Networks
- Stochastic methods
Quadratic loss function

- See huber.ipynb
- Least squares employs a quadratic loss function

This function imposes a severe penalty on large values
- As a result, the fit model is very sensitive to outliers (can overfit)
- Can we use a different loss function?
Huber loss function

- The Huber function allows us to better handle outliers in data
- Usual quadratic loss in interval $[-M, M]$
- Linear loss for $|x| > M$

$$h_M(x) = \begin{cases}
 x^2 & |x| \leq M \\
 2M|x| - M^2 & |x| > M
\end{cases}$$

![Graph](image.png)
Huber loss function

- This function imposes a less severe penalty on large values.
- Let’s repeat the time-series example, but include extreme outliers.
- Penalize closeness to data with Huber function h_M to reduce outlier influence:

$$\min_{\beta} \sum_{i=1}^{m} h_M(\beta_i - y_i) + \rho \|D\beta\|_2^2$$

- M parameter controls width of quadratic region, or “non-outlier” errors.
- This is no longer least squares!
- CVXPY has implemented the Huber loss function.
Huber data

Beyond least squares
Least-squares smoothing

```python
# get second-order difference matrix
D = diff(n, 2)
rho = 20

beta = Variable(n)
obj = sum_squares(beta-b) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
beta = np.array(beta.value).flatten()
```
Least-squares smoothing result

- Model overfits the outliers

Beyond least squares
Huber smoothing

```python
# get second-order difference matrix
D = diff(n, 2)
rho = 20
M = .15  # huber radius

beta = Variable(n)
obj = sum_entries(huber(beta-b, M)) + rho*sum_squares(D*beta)
Problem(Minimize(obj)).solve()
x = np.array(x.value).flatten()
```
The model is less sensitive to outliers!
Deep Feedforward Networks
Outline

Model fitting

Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data
Linear least squares: general formulation and matrix–vector form

Examples

Nonlinear least squares
Beyond least squares

Deep Feedforward Networks

Stochastic methods
A deep feedforward network defines a particular model $f(x; \beta)$

- $f(x; \beta) = f^{(3)}(f^{(2)}(f^{(1)}(x; \beta_1; \beta_2); \beta_3)$ is a ‘network’ (function composition)
- $f^{(i)}(x; \beta_i)$: function charactering the ith layer with parameters β_i
- Parameters $\beta = (\beta_1, \beta_2, \beta_3) \in \mathbb{R}^n$

- Evaluating f is ‘forward propagation’: start at the beginning ($f^{(1)}$) and evaluate forward sequentially
- It is ‘deep’ if there are many composed functions, and thus β is high-dimensional
- f is generally nonlinear in the parameters β
- If additive Gaussian noise, then MLE leads to nonlinear least squares
- Other loss functions possible (e.g., non-Gaussian noise); then no longer least squares
Computing the gradient can be done by applying the chain rule, e.g.,

\[
\frac{\partial \phi}{\partial \beta_2} = \frac{\partial \phi}{\partial f^{(3)}} \frac{\partial f^{(3)}}{\partial x} \frac{\partial f^{(2)}}{\partial \beta_2}, \quad \frac{\partial \phi}{\partial \beta_1} = \frac{\partial \phi}{\partial f^{(3)}} \frac{\partial f^{(3)}}{\partial x} \frac{\partial f^{(2)}}{\partial x} \frac{\partial f^{(1)}}{\partial \beta_1}
\]

Computing the gradient is referred to as back propagation: the chain rule ‘propagates’ information from the end of the network \(f^{(3)}\) upstream (e.g., to \(f^{(1)}\)
Deep Feedforward Networks: optimization challenges in optimization

minimize \(\phi(\beta) = \frac{1}{2} \sum_{i=1}^{m} (f(x_i; \beta) - y_i)^2 \)

High-dimensional

- many \(\beta \) parameters \(n \) (due to many layers)
- many training samples \(m \) and (need lots of data to tune many parameters)
- **solution**: stochastic/minibatch methods (e.g., stochastic gradient descent)

Non-convex

- can get trapped in local minima
- **solution**: local minima seem to yield a “low-enough” cost-function value

Ill conditioning

- **solution**: second-order methods (but hard for NNs)
Stochastic methods
Outline

Model fitting
Linear least squares: 1D case with linear data
Linear least squares: 1D case with non-linear data
Linear least squares: general formulation and matrix–vector form
Examples
Nonlinear least squares
Beyond least squares
Deep Feedforward Networks

Stochastic methods
What does ‘Big Data’ mean for model fitting?

- In model fitting, the objective function is usually composed of a sum of \(m \) contributions:

\[
\phi(\beta) = \frac{1}{m} \sum_{i=1}^{m} \phi_i(\beta)
\]

- \(\phi_i \): is the loss associated with the \(i \)th training example
- \(\phi \): a sampling-based approximation of the expected loss

- ‘Big Data’ can refer to:
 - many training examples: \(m \) large
 - many parameters: \(n \) large
 - deep learning falls in this category!

- Specialized methods have been developed for these cases!
 - **stochastic/minibatch methods** (next)
 - distributed optimization (see ‘Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers’ by Boyd et al.)
Stochastic methods

Here, the gradient is also a sum of m contributions:

$$\nabla \phi(\beta) = \frac{1}{m} \sum_{i=1}^{m} \nabla \phi_i(\beta)$$

- **Batch methods** use this within gradient-based optimization
- **Benefit**: Preserves traditional convergence rates
- **Drawbacks**:
 - Requires accessing all m data points each iteration (*costly*)
 - Many data points are likely *redundant*
- Can we make this less expensive yet still maintain convergence?

Observations:

1. The objective is (usually) just the **sample mean** of the loss function
2. Expectations via Monte Carlo sampling converge slowly (rate $m^{-1/2}$)
3. Exact gradients aren’t needed for convergence

Idea: inexpensively approximate the gradient with a *sample* of the data
Stochastic methods

Stochastic methods: compute approximate the gradient as

$$\nabla \phi(\beta) \approx \nabla \phi_i(\beta)$$

- i is a randomly chosen training example
- **Stochastic gradient descent (SGD)**: stochastic approximation to gradient descent:

$$x_{i+1} = x_k - \alpha_k \nabla \phi_i(\beta)$$

- **Benefits**:
 - each iteration is *much cheaper*
 - often observe faster rate of convergence *as a function of accessed data points*
 - a descent direction *in expectation*, i.e., $\mathbb{E}[\nabla \phi_i(\beta)] = \nabla \phi(\beta)$

- **Drawbacks**
 - slower rate of convergence *as a function of iteration* (sublinear for SGD)
 - observed slowdown as iterations progress due to noisy gradients
SGD performance in practice

![Graph showing empirical risk as a function of accessed data points for LBFGS and SGD methods.]

Fig. 3.1 Empirical risk R_n as a function of the number of accessed data points (ADPs) for a batch L-BFGS method and the SG method (3.7) on a binary classification problem with a logistic loss objective and the RCV1 dataset. SG was run with a fixed stepsize of $\alpha = 4$.

Stochastic methods
Improving the convergence rate of stochastic methods

Noise reduction: reduce variance gradient estimate

- **Dynamic sampling**: use **minibatch** estimates of the gradient at iteration k:

$$\nabla \phi(\beta) \approx \frac{1}{|S_k|} \sum_{i \in S_k} \nabla \phi_i(\beta),$$

where the minibatch size $|S_k|$ increases with k.

- **Gradient aggregation**: reuse recently computed gradient information
 - **Example**: stochastic variance reduced gradient (SVRD):

$$\nabla \phi(\beta) \approx \nabla \phi_i(\beta) - (\nabla \phi_i(\bar{\beta}) - \nabla \phi(\bar{\beta}))$$

- $\bar{\beta}$: variables the last time the true batch gradient was computed
Improving the convergence rate of stochastic methods

Second-order methods: use sampled Hessian information

- **Subsampled Hessian-Free Newton Methods:** minibatch estimate of the Hessian

\[\nabla^2 \phi(\beta) \approx \frac{1}{|S_k^H|} \sum_{i \in S_k^H} \nabla^2 \phi_i(\beta) \]

- Can also enforce positive definiteness via subsampled Gauss–Newton approximations

- **Subsampled Quasi-Newton Methods:**
 - typical quasi-Newton methods with stochastic estimates of the gradient