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Constrained optimization
Theory, methods, and software for problems exihibiting the characteristics below

I Convexity:
I convex: local solutions are global
I non-convex : local solutions are not global

I Optimization-variable type:
I continuous : gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained: simpler algorithms
I constrained : more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional : can solve even without gradients
I high-dimensional : requires gradients to be solvable in practice
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Constrained optimization

I This lecture considers constrained optimization

minimize f(x)
subject to ci(x) = 0, i = 1, . . . , ne

dj(x) ≥ 0, j = 1, . . . , ni

(1)

I Equality constraint functions: ci : Rn → R
I Inequality constraint functions: dj : Rn → R
I Feasible set: Ω = {x | ci(x) = 0, dj(x) ≥ 0, i = 1, . . . , ne, j = 1, . . . , ni}
I We assume all functions are twice-continuously differentiable
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What is a solution?

x

f(x)

I Global minimum: A point x∗ ∈ Ω satisfying f(x∗) ≤ f(x) ∀x ∈ Ω
I Strong local minimum: A neighborhood N of x∗ ∈ Ω exists such that f(x∗) < f(x)
∀x ∈ N ∩ Ω.

I Weak local minima A neighborhood N of x∗ ∈ Ω exists such that f(x∗) ≤ f(x)
∀x ∈ N ∩ Ω.
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Convexity

As with the unconstrained case, conditions hold where any local minimum is the global
minimum:
I f(x) convex
I ci(x) affine (ci(x) = Aix+ bi) for i = 1, . . . , ne

I dj(x) convex for j = 1, . . . , ni
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Active set
I The active set at a feasible point x ∈ Ω consists of the equality constraints and the

inequality constraints for which dj(x) = 0
A(x) = {ci}ni

i=1 ∪ {dj | dj(x) = 0}

x

f(x)

d2

d3d1

Ω

d4

x

Figure 1: A(x) = {d1, d3}
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First-order necessary conditions
Words: the function cannot decrease by moving in feasible directions
Theorem (First-order necessary KKT conditions for local minima)
If x∗ is a weak local minimum, then

∇f(x∗)−
ne∑

i=1
γi∇ci(x∗)−

ni∑
j=1

λj∇dj(x∗) = 0

λj ≥ 0, j = 1, . . . , ni

ci(x∗) = 0, i = 1, . . . , ne

dj(x∗) ≥ 0, j = 1, . . . , ni

λjdj(x∗) = 0, j = 1, . . . , ni

I Stationarity, Dual feasibility, Primal feasibility (x∗ ∈ Ω), Complementarity
conditions, Lagrange multipliers γi, λjTheory 9



Intuition for stationarity and dual feasibility

minimize
x∈Rn

f(x) = x2
1 + x2

2

subject to d1(x) = x1 + x2 − 3 ≥ 0x

f(x)

x∗ TΩ(x∗)
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I The solution is x∗ = (1.5, 1.5)
Theory 10



Intuition for stationarity and dual feasibility (continued)
I The KKT conditions say ∇f(x∗) = λ1∇d1(x∗) with λ1 ≥ 0
I Here, ∇f(x∗) = [3, 3]T , while ∇d1(x∗) = [1.5, 1.5]T , so these conditions are indeed

verified with λ1 = 2 ≥ 0
I This is obvious from the figure: if ∇f(x∗) and ∇d1(x∗) were “misaligned,” there

would be feasible descent directions!
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I This gives us some intuition for stationarity and dual feasibilityTheory 11



Lagrangian

Definition (Lagrangian)
The Lagrangian for (1) is

L(x, γ, λ) = f(x)−
ne∑

i=1
γici(x)−

ni∑
j=1

λjdj(x)

I Stationarity in the sense of KKT is equivalent to stationarity of the Lagrangian with
respect to x:

∇xL(x, γ, λ) = ∇f(x)−
ne∑

i=1
γi∇ci(x)−

ni∑
j=1

λj∇dj(x)

I KKT stationarity ⇔ ∇xL(x∗, γ, λ) = 0
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Lagrange multipliers

I Lagrange multipliers γi and λj arise in constrained minimization problems
I They tell us about the sensitivity of f(x∗) to the constraints.

I γi and λj indicate how hard f is “pushing” or “pulling” the solution against ci and dj .
I If we perturb the right-hand side of the ith equality constraint so that
ci(x) ≥ −ε‖∇ci(x∗)‖, then

df(x∗(ε))
dε

= −γi‖∇ci(x∗)‖.

I If we perturb the jth inequality so that dj(x) ≥ −ε‖∇dj(x∗)‖, then

df(x∗(ε))
dε

= −λj‖∇di(x∗)‖.
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Intuition for complementarity

I We just saw that non-participating constraints have zero Lagrange multipliers
I The complementarity conditions are

λjdj(x∗) = 0, j = 1, . . . , ni

I This means that each inequality constraint must be either:
1. Inactive (non-participating): dj(x∗) > 0, λj = 0,
2. Strongly active (participating): dj(x∗) = 0 and λj > 0, or
3. Weakly active (active but non-participating): dj(x∗) = 0 and λj = 0
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Second-order conditions for unconstrained problems

I Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)
A1. ∇f(x∗) = 0 (stationary point)
A2. ∇2f(x∗) � 0 (pT∇2f(x∗)p ≥ 0 for all p 6= 0)

Theorem (Sufficient conditions for a strong local minimum)
B1. ∇f(x∗) = 0 (stationary point)
B2. ∇2f(x∗) � 0 (pT∇2f(x∗)p > 0 for all p 6= 0).
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Second-order conditions for constrained problems

I We make an analogous statement for constrained problems, but limit the directions
p to the critical cone C(x∗, γ)

I Critical cone C(x∗, γ): set of directions that "adhere" to equality and active
inequality constraits

Theorem (Necessary conditions for a weak local minimum)
D1. KKT conditions hold
D2. pT∇2

xL(x∗, γ)p ≥ 0 for all p ∈ C(x∗, γ)

Theorem (Sufficient conditions for a strong local minimum)
E1. KKT conditions hold
E2. pT∇2

xL(x∗, γ)p > 0 for all p ∈ C(x∗, γ).
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Intuition for second-order conditions
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I Case 1: E1 and E2 are satisfied (sufficient conditions hold)
I Case 2: D1 and D2 are satisfied (necessary conditions hold)
I Case 3: D1 holds, D2 does not (necessary conditions failed)

I Can reduce objective by curving around boundary!Theory 17
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Constrained optimization algorithms
I Linear programming (LP)

I Simplex method: created by Dantzig in 1947. Birth of the modern era in optimization
I Interior-point methods

I Nonlinear programming (NLP)
I Penalty methods
I Augmented Lagrangian methods
I Interior-point methods
I Sequential quadratic/convex programming methods

I Almost all of these methods rely on line-search and trust region methodologies from
unconstrained optimization!

I Algorithmic approaches for constrained optimization
1. Solve a sequence of unconstrained problems (penalty, interior-point)
2. Solve a sequence of simpler problems (SQP, SCP)Algorithms 20



Penalty methods

minimize f(x) subject to ci(x) = 0, i = 1, . . . , ni

I Penalty methods combine the objective and constraints
I Smooth penalty functions

minimize f(x) + µ

2

ni∑
i=1

c2
i (x)

I Non-smooth penalty functions

minimize f(x) + µ
ni∑

i=1
|ci(x)|
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Penalty methods example (smooth)

I Original problem:

minimize f(x) = x2
1 + 3x2, subject to x1 + x2 − 4 = 0
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Penalty methods example (smooth)
I Penalty formulation:

minimize g(x) = x2
1 + 3x2 + µ

2 (x1 + x2 − 4)2
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I A valley is created along the constraint x1 + x2 − 4 = 0
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Penalty methods tradeoffs

1. Smoothness v. exactness
I Smooth penalty : preserve smoothness (easier to solve), but must solve a sequence of

problems for increasing µ
I Non-smooth penalty : it is exact (solve only one problem), but objective no longer

smooth (harder to solve)
2. Size of penalty parameter

I Large: function less likely to be unbounded below and closer to exact solution, but
more ill-conditioned Hessians

I Small : Better conditioned Hessians, but slower convergence
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Interior-point methods

I These methods are also known as “barrier methods,” because they build a barrier at
the inequality constraint boundary

minimize f(x)− µ
ni∑

i=1
log dj(x)

subject to ci(x) = 0, i = 1, . . . , ne

I Slack variables: si, indicates distance from constraint boundary
I Solve a sequence of problems with µ decreasing

Algorithms 25



Interior-point methods example

I Original problem:

minimize f(x) = x2
1 + 3x2, subject to − x1 − x2 + 4 ≥ 0
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Interior-points methods example

I Interior-point formulation:

minimize h(x) = x2
1 + 3x2 − µ log (−x1 − x2 + 4)

I A barrier is created along the boundary of the inequality constraint x1 + x2 − 4 = 0
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Sequential quadratic programming
I Perhaps the most effective algorithm
I Solve a quadratic programming (QP) subproblem at each iteration

minimize 1
2p

T∇2
xxL(xk, λk)p+∇f(xk)T p

subject to ∇ci(xk)Tp+ ci(xk) = 0, i = 1, . . . , ne

∇dj(xk)T p+ dj(xk) ≥ 0, j = 1, . . . , ni

I When ni = 0, this is equivalent to Newton’s method on the KKT conditions
I When ni > 0, this corresponds to an “active set” method, where we keep track of

the set of active constraints A(xk) at each iteration
I Sequential convex programming (SCP) is a variant wherein the subproblem is

convex, but need not be quadratic
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Summary

I Many concepts from the unconstrained case extend to the constrained case
I First-order and second-order optimality

I To handle constraints, we make a few adjustments
I Modify notions of first-order and second-order optimality
I Introduce Lagrange multipliers to quantify the effect of constraints

I Algorithmic approaches for constrained optimization
1. Solve a sequence of unconstrained problems (penalty, interior-point)
2. Solve a sequence of simpler problems (SQP, SCP)
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