
Constrained optimization

Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

1

Theory

Theory 2

Outline

Theory

Algorithms

Theory 3

Constrained optimization
Theory, methods, and software for problems exihibiting the characteristics below

I Convexity:
I convex: local solutions are global
I non-convex : local solutions are not global

I Optimization-variable type:
I continuous : gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained: simpler algorithms
I constrained : more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional : can solve even without gradients
I high-dimensional : requires gradients to be solvable in practice

Theory 4

Constrained optimization

I This lecture considers constrained optimization

minimize f(x)
subject to ci(x) = 0, i = 1, . . . , ne

dj(x) ≥ 0, j = 1, . . . , ni

(1)

I Equality constraint functions: ci : Rn → R
I Inequality constraint functions: dj : Rn → R
I Feasible set: Ω = {x | ci(x) = 0, dj(x) ≥ 0, i = 1, . . . , ne, j = 1, . . . , ni}
I We assume all functions are twice-continuously differentiable

Theory 5

What is a solution?

x

f(x)

I Global minimum: A point x∗ ∈ Ω satisfying f(x∗) ≤ f(x) ∀x ∈ Ω
I Strong local minimum: A neighborhood N of x∗ ∈ Ω exists such that f(x∗) < f(x)
∀x ∈ N ∩ Ω.

I Weak local minima A neighborhood N of x∗ ∈ Ω exists such that f(x∗) ≤ f(x)
∀x ∈ N ∩ Ω.

Theory 6

Convexity

As with the unconstrained case, conditions hold where any local minimum is the global
minimum:
I f(x) convex
I ci(x) affine (ci(x) = Aix+ bi) for i = 1, . . . , ne

I dj(x) convex for j = 1, . . . , ni

Theory 7

Active set
I The active set at a feasible point x ∈ Ω consists of the equality constraints and the

inequality constraints for which dj(x) = 0
A(x) = {ci}ni

i=1 ∪ {dj | dj(x) = 0}

x

f(x)

d2

d3d1

Ω

d4

x

Figure 1: A(x) = {d1, d3}

Theory 8

First-order necessary conditions
Words: the function cannot decrease by moving in feasible directions
Theorem (First-order necessary KKT conditions for local minima)
If x∗ is a weak local minimum, then

∇f(x∗)−
ne∑

i=1
γi∇ci(x∗)−

ni∑
j=1

λj∇dj(x∗) = 0

λj ≥ 0, j = 1, . . . , ni

ci(x∗) = 0, i = 1, . . . , ne

dj(x∗) ≥ 0, j = 1, . . . , ni

λjdj(x∗) = 0, j = 1, . . . , ni

I Stationarity, Dual feasibility, Primal feasibility (x∗ ∈ Ω), Complementarity
conditions, Lagrange multipliers γi, λjTheory 9

Intuition for stationarity and dual feasibility

minimize
x∈Rn

f(x) = x2
1 + x2

2

subject to d1(x) = x1 + x2 − 3 ≥ 0x

f(x)

x∗ TΩ(x∗)

x

y

!x+3

!2 !1 0 1 2 3 4 5 6

!3

!2

!1

0

1

2

3

4

5

6

x∗

x1

x2

∇d1(x
∗) ∇f(x∗)

I The solution is x∗ = (1.5, 1.5)
Theory 10

Intuition for stationarity and dual feasibility (continued)
I The KKT conditions say ∇f(x∗) = λ1∇d1(x∗) with λ1 ≥ 0
I Here, ∇f(x∗) = [3, 3]T , while ∇d1(x∗) = [1.5, 1.5]T , so these conditions are indeed

verified with λ1 = 2 ≥ 0
I This is obvious from the figure: if ∇f(x∗) and ∇d1(x∗) were “misaligned,” there

would be feasible descent directions!
x

f(x)

x∗ TΩ(x∗)

x

y

!x+3

!2 !1 0 1 2 3 4 5 6

!3

!2

!1

0

1

2

3

4

5

6

x∗

x1

x2

∇d1(x
∗) ∇f(x∗)

x

y

!x+3

!2 !1 0 1 2 3 4 5 6

!3

!2

!1

0

1

2

3

4

5

6

x∗

x1

x2

x

∇f(x)

∇d1(x)

feasible descent

directions

I This gives us some intuition for stationarity and dual feasibilityTheory 11

Lagrangian

Definition (Lagrangian)
The Lagrangian for (1) is

L(x, γ, λ) = f(x)−
ne∑

i=1
γici(x)−

ni∑
j=1

λjdj(x)

I Stationarity in the sense of KKT is equivalent to stationarity of the Lagrangian with
respect to x:

∇xL(x, γ, λ) = ∇f(x)−
ne∑

i=1
γi∇ci(x)−

ni∑
j=1

λj∇dj(x)

I KKT stationarity ⇔ ∇xL(x∗, γ, λ) = 0

Theory 12

Lagrange multipliers

I Lagrange multipliers γi and λj arise in constrained minimization problems
I They tell us about the sensitivity of f(x∗) to the constraints.

I γi and λj indicate how hard f is “pushing” or “pulling” the solution against ci and dj .
I If we perturb the right-hand side of the ith equality constraint so that
ci(x) ≥ −ε‖∇ci(x∗)‖, then

df(x∗(ε))
dε

= −γi‖∇ci(x∗)‖.

I If we perturb the jth inequality so that dj(x) ≥ −ε‖∇dj(x∗)‖, then

df(x∗(ε))
dε

= −λj‖∇di(x∗)‖.

Theory 13

Intuition for complementarity

I We just saw that non-participating constraints have zero Lagrange multipliers
I The complementarity conditions are

λjdj(x∗) = 0, j = 1, . . . , ni

I This means that each inequality constraint must be either:
1. Inactive (non-participating): dj(x∗) > 0, λj = 0,
2. Strongly active (participating): dj(x∗) = 0 and λj > 0, or
3. Weakly active (active but non-participating): dj(x∗) = 0 and λj = 0

Theory 14

Second-order conditions for unconstrained problems

I Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)
A1. ∇f(x∗) = 0 (stationary point)
A2. ∇2f(x∗) � 0 (pT∇2f(x∗)p ≥ 0 for all p 6= 0)

Theorem (Sufficient conditions for a strong local minimum)
B1. ∇f(x∗) = 0 (stationary point)
B2. ∇2f(x∗) � 0 (pT∇2f(x∗)p > 0 for all p 6= 0).

Theory 15

Second-order conditions for constrained problems

I We make an analogous statement for constrained problems, but limit the directions
p to the critical cone C(x∗, γ)

I Critical cone C(x∗, γ): set of directions that "adhere" to equality and active
inequality constraits

Theorem (Necessary conditions for a weak local minimum)
D1. KKT conditions hold
D2. pT∇2

xL(x∗, γ)p ≥ 0 for all p ∈ C(x∗, γ)

Theorem (Sufficient conditions for a strong local minimum)
E1. KKT conditions hold
E2. pT∇2

xL(x∗, γ)p > 0 for all p ∈ C(x∗, γ).

Theory 16

Intuition for second-order conditions

x∗

x1

x2
∇d1(x

∗)
∇f(x∗)

x

y

(x+y)
2
+3 (x!y)

2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x∗

x1

x2
∇d1(x

∗)
∇f(x∗)

x

y

(x+y)
2
+3 (x!y)

2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x∗

x1

x2
∇d1(x

∗)
∇f(x∗)

x

y

(x+y)
2
+3 (x!y)

2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

C(x∗, λ) C(x∗, λ)

C(x∗, λ)

d1(x)
d1(x)

d1(x)

Case I Case 2

Case 3

I Case 1: E1 and E2 are satisfied (sufficient conditions hold)
I Case 2: D1 and D2 are satisfied (necessary conditions hold)
I Case 3: D1 holds, D2 does not (necessary conditions failed)

I Can reduce objective by curving around boundary!Theory 17

Algorithms

Algorithms 18

Outline

Theory

Algorithms

Algorithms 19

Constrained optimization algorithms
I Linear programming (LP)

I Simplex method: created by Dantzig in 1947. Birth of the modern era in optimization
I Interior-point methods

I Nonlinear programming (NLP)
I Penalty methods
I Augmented Lagrangian methods
I Interior-point methods
I Sequential quadratic/convex programming methods

I Almost all of these methods rely on line-search and trust region methodologies from
unconstrained optimization!

I Algorithmic approaches for constrained optimization
1. Solve a sequence of unconstrained problems (penalty, interior-point)
2. Solve a sequence of simpler problems (SQP, SCP)Algorithms 20

Penalty methods

minimize f(x) subject to ci(x) = 0, i = 1, . . . , ni

I Penalty methods combine the objective and constraints
I Smooth penalty functions

minimize f(x) + µ

2

ni∑
i=1

c2
i (x)

I Non-smooth penalty functions

minimize f(x) + µ
ni∑

i=1
|ci(x)|

Algorithms 21

Penalty methods example (smooth)

I Original problem:

minimize f(x) = x2
1 + 3x2, subject to x1 + x2 − 4 = 0

0

1

2

3

4

0

1

2

3

4
0

5

10

15

20

25

x

x
2
+3 y

y

f (x)

Algorithms 22

Penalty methods example (smooth)
I Penalty formulation:

minimize g(x) = x2
1 + 3x2 + µ

2 (x1 + x2 − 4)2

0

1

2

3

4

0

1

2

3

4
0

5

10

15

20

25

x

x
2
+3 y

y

f (x)

0

1

2

3

4

0

1

2

3

4
0

10

20

30

40

50

60

x

x
2
+3 y+µ (x+y! 4)

2

y

g(x)

I A valley is created along the constraint x1 + x2 − 4 = 0

Algorithms 23

Penalty methods tradeoffs

1. Smoothness v. exactness
I Smooth penalty : preserve smoothness (easier to solve), but must solve a sequence of

problems for increasing µ
I Non-smooth penalty : it is exact (solve only one problem), but objective no longer

smooth (harder to solve)
2. Size of penalty parameter

I Large: function less likely to be unbounded below and closer to exact solution, but
more ill-conditioned Hessians

I Small : Better conditioned Hessians, but slower convergence

Algorithms 24

Interior-point methods

I These methods are also known as “barrier methods,” because they build a barrier at
the inequality constraint boundary

minimize f(x)− µ
ni∑

i=1
log dj(x)

subject to ci(x) = 0, i = 1, . . . , ne

I Slack variables: si, indicates distance from constraint boundary
I Solve a sequence of problems with µ decreasing

Algorithms 25

Interior-point methods example

I Original problem:

minimize f(x) = x2
1 + 3x2, subject to − x1 − x2 + 4 ≥ 0

0

1

2

3

4

0

1

2

3

4
0

5

10

15

20

25

x

x
2
+3 y

y

f (x)

Algorithms 26

Interior-points methods example

I Interior-point formulation:

minimize h(x) = x2
1 + 3x2 − µ log (−x1 − x2 + 4)

I A barrier is created along the boundary of the inequality constraint x1 + x2 − 4 = 0

Algorithms 27

Sequential quadratic programming
I Perhaps the most effective algorithm
I Solve a quadratic programming (QP) subproblem at each iteration

minimize 1
2p

T∇2
xxL(xk, λk)p+∇f(xk)T p

subject to ∇ci(xk)Tp+ ci(xk) = 0, i = 1, . . . , ne

∇dj(xk)T p+ dj(xk) ≥ 0, j = 1, . . . , ni

I When ni = 0, this is equivalent to Newton’s method on the KKT conditions
I When ni > 0, this corresponds to an “active set” method, where we keep track of

the set of active constraints A(xk) at each iteration
I Sequential convex programming (SCP) is a variant wherein the subproblem is

convex, but need not be quadratic
Algorithms 28

Summary

I Many concepts from the unconstrained case extend to the constrained case
I First-order and second-order optimality

I To handle constraints, we make a few adjustments
I Modify notions of first-order and second-order optimality
I Introduce Lagrange multipliers to quantify the effect of constraints

I Algorithmic approaches for constrained optimization
1. Solve a sequence of unconstrained problems (penalty, interior-point)
2. Solve a sequence of simpler problems (SQP, SCP)

Algorithms 29

	Theory
	Algorithms

