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Constrained optimization

Theory, methods, and software for problems exihibiting the characteristics below

> Convexity:
P> convex: local solutions are global

» [ non-convex | local solutions are not global

» Optimization-variable type:

> : gradients facilitate computing the solution

» discrete: cannot compute gradients, NP-hard
» Constraints:
» unconstrained: simpler algorithms

> : more complex algorithms; must consider feasibility

» Number of optimization variables:
> ’ low-dimensional \: can solve even without gradients

> ’ high-dimensional ‘: requires gradients to be solvable in practice
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Constrained optimization

» This lecture considers constrained optimization

minimize

subject to

» Equality constraint functions: ¢; :

» Inequality constraint functions: d;
> Feasible set: Q = {z|¢;i(z) =0, dj(z) >0,i=1,...,n j=1,..

f(x)

ci(r) =0, 1=1,...,n
dy(x)ZO; J=1 y 1Y
R" - R

:R" = R

» We assume all functions are twice-continuously differentiable
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What is a solution?

f(x)

A\ 4

xr

» Global minimum: A point z* € ) satisfying f(z*) < f(x) Vx € Q

» Strong local minimum: A neighborhood N of z* € Q exists such that f(z*) < f(x)
Ve e NNQ.

» Weak local minima A neighborhood N of 2* € Q exists such that f(z*) < f(x)
Vo e NNQ.
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Convexity

As with the unconstrained case, conditions hold where any local minimum is the global
minimum:

> f(x) convex
» c;(x) affine (¢;(x) = Az +b;) fori=1,...,n,

» d;(z) convex for j =1,...,n;
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Active set

» The active set at a feasible point € Q) consists of the equality constraints and the
inequality constraints for which d;(z) =0

Alx) = {eitiz, U{d; | dj(x) = 0}

ds ds
Q

ﬁ—\\;\ ds

Figure 1. A(z) = {dy, d3}
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First-order necessary conditions
Words: the function cannot decrease by moving in feasible directions

Theorem (First-order necessary KKT conditions for local minima)

If * is a weak local minimum, then

V") — i%Vci(:v*) - i: A\ Vdj(xz*) =0
i=1 j=1

)\jZO, jzl,...,ni

» Stationarity, Dual feasibility, Primal feasibility (z* € ), Complementarity
Theory conditions, Lagrange multipliers 7;, A;



Intuition for stationarity and dual feasibility

minimize f(z) = 27 + 3
IERn

subject to di(z) =21 +22—-3>0

~\
N\

—

.
VN ()

)

T2, €T ‘

|

» The solution is z* = (1.5,1.5)
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Intuition for stationarity and dual feasibility (continued)

» The KKT conditions say V f(z*) = A1 Vdi(z*) with A\; >0

> Here, Vf(z*) = [3,3]", while Vdy(z*) = [1.5,1.5]", so these conditions are indeed
verified with A\ =2 >0

» This is obvious from the figure: if V f(z*) and Vd;(z*) were “misaligned,” there
would be feasible descent directions!

V\f\(:)
dq ()

To K fe: |})Ie escent
T rections

55555

Thedy This gives us some intuition for stationarity and dual feasibility 11



Lagrangian

Definition (Lagrangian)
The Lagrangian for (1) is

£(@.7.0) = £(&) = 3 ieila) = 3 Ay (o)
1= Jj=

> Stationarity in the sense of KKT is equivalent to stationarity of the Lagrangian with
respect to x:

VoL(z,7,\) = Z%ch Z A;Vd;(

» KKT stationarity < V,L(z*,v,A) =0

Theory
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Lagrange multipliers

» Lagrange multipliers ; and ); arise in constrained minimization problems

» They tell us about the sensitivity of f(z*) to the constraints.
» ~; and ); indicate how hard f is “pushing” or “pulling” the solution against c; and d;.

> If we perturb the right-hand side of the ith equality constraint so that
ci(x) > —€l|Vei(x*)||, then

df (z*(€))

L — Vel

» If we perturb the jth inequality so that d;(x) > —¢||Vd;(z*)||, then

df(z?f” — )| Vdi(a")]).
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Intuition for complementarity

> We just saw that non-participating constraints have zero Lagrange multipliers

» The complementarity conditions are

P> This means that each inequality constraint must be either:
1. Inactive (non-participating): d;(z*) >0, A; =0,
2. Strongly active (participating): d;(z*) =0 and \; > 0, or
3. Weakly active (active but non-participating): d;(z*) =0 and A; =0
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Second-order conditions for unconstrained problems

» Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)
Al. Vf(z*) = 0 (stationary point)
A2. V2f(x*) =0 (pTV2f(z*)p >0 for all p #0)

Theorem (Sufficient conditions for a strong local minimum)
B1. Vf(z*) = 0 (stationary point)
B2. V2f(x*) = 0 (p'V2f(x*)p > 0 for all p #0).
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Second-order conditions for constrained problems

> We make an analogous statement for constrained problems, but limit the directions
p to the critical cone C(z*,7)

» Critical cone C(z*,7): set of directions that "adhere" to equality and active
inequality constraits
Theorem (Necessary conditions for a weak local minimum)
D1. KKT conditions hold
D2. p'V2L(z*,v)p > 0 for all p € C(z*,7)

Theorem (Sufficient conditions for a strong local minimum)
El. KKT conditions hold
E2. pT'N2L(z*,y)p > 0 for all p € C(x*,7).
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Intuition for second-order conditions

» Case 1:

» Case 2:
» Case 3:

Theory

» Can

E1l and E2 are satisfied (sufficient conditions hold)
D1 and D2 are satisfied (necessary conditions hold)
D1 holds, D2 does not (necessary conditions failed)

reduce objective by curving around boundary!
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Constrained optimization algorithms

» Linear programming (LP)
» Simplex method: created by Dantzig in 1947. Birth of the modern era in optimization
» Interior-point methods

» Nonlinear programming (NLP)
» Penalty methods
» Augmented Lagrangian methods
» Interior-point methods
> Sequential quadratic/convex programming methods

» Almost all of these methods rely on line-search and trust region methodologies from

unconstrained optimization!

» Algorithmic approaches for constrained optimization

1. Solve a sequence of unconstrained problems (penalty, interior-point)

Algorithm@. Solve a sequence of simpler problems (SQP, SCP)
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Penalty methods

minimize f(z)

P Penalty methods combine the objective and constraints
» Smooth penalty functions

minimize f(z) + %Z A (x)

» Non-smooth penalty functions

n;
minimize f(z) + MZ lci(z)]
i=1

Algorithms

subject to ¢i(z) =0, i=1,...
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Penalty methods example (smooth)

» Original problem:

minimize f(z) = ZE% + 3xo, subject to x1 +x0—4 =

f(x)
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Penalty methods example (smooth)
» Penalty formulation:

minimize g(x) = 23 + 3z + g(xl +x2—4)

9(x)

P A valley is created along the constraint z; +z9 —4 =10

Algorithms
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Penalty methods tradeoffs

1. Smoothness v. exactness

» Smooth penalty: preserve smoothness (easier to solve), but must solve a sequence of
problems for increasing p

» Non-smooth penalty: it is exact (solve only one problem), but objective no longer
smooth (harder to solve)

2. Size of penalty parameter

» Large: function less likely to be unbounded below and closer to exact solution, but
more ill-conditioned Hessians

» Small: Better conditioned Hessians, but slower convergence
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Interior-point methods

P> These methods are also known as “barrier methods,” because they build a barrier at
the inequality constraint boundary

minimize f(x) — uilog dj(z)
i=1

subject to ¢i(z) =0, i1=1,...,n

» Slack variables: s;, indicates distance from constraint boundary
> Solve a sequence of problems with y decreasing

Algorithms
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Interior-point methods example

» Original problem:

minimize f(z) = 27 + 3o,

f(x)

Algorithms

subject to —x1 — 29 +4>0

26



Interior-points methods example

» Interior-point formulation:

minimize h(z) = 22 + 3xo — plog (—x1 — x9 + 4)

P A barrier is created along the boundary of the inequality constraint 1 +x92 —4 =0
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Sequential quadratic programming

» Perhaps the most effective algorithm

» Solve a quadratic programming (QP) subproblem at each iteration

1
minimize Jp" V2, £ (s, M)p + V1 (21)
subject to Ve (xg)Tp+ci(zg) =0, 1=1,...,n
Vdj(xk)Tp—i—dj(xk) >0, j=1,...,n4

v

When n; = 0, this is equivalent to Newton's method on the KKT conditions

v

When n; > 0, this corresponds to an “active set” method, where we keep track of
the set of active constraints A(xy) at each iteration

» Sequential convex programming (SCP) is a variant wherein the subproblem is
convex, but need not be quadratic
Algorithms 28



Summary

> Many concepts from the unconstrained case extend to the constrained case
» First-order and second-order optimality
> To handle constraints, we make a few adjustments
» Modify notions of first-order and second-order optimality
> Introduce Lagrange multipliers to quantify the effect of constraints
» Algorithmic approaches for constrained optimization
1. Solve a sequence of unconstrained problems (penalty, interior-point)
2. Solve a sequence of simpler problems (SQP, SCP)
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