Optimization in Python

Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Optimization tools in Python

We will go over and use two tools:

1. scipy.optimize

2. CVXPY
See quadratic_minimization.ipynb

» User inputs defined in the second cell
» Enables exploration of how problem attributes affect optimization-solver performance

scipy.optimize

scipy.optimize

Outline

scipy.optimize

scipy.optimize

scipy.optimize

scipy.optimize: sub-package of SciPy, which is an open source Python library for
scientific computing

> Analogous to Matlab's optimization toolbox
» Capabilities
» Optimization

» Local optimization

» Equation minimizers

» Global optimization
Fitting (nonlinear least squares)
Root finding
Linear Programming
Utilities (e.g., check_grad for verifying analytic gradients)

vvyyvyy

scipy.optimize

scipy.optimize interface

Requires the user to define a function in Python

» Can be black box: no closed-form mathematical expression needed!

» Only the function value f(x) is required

» Can optionally provides the gradient V f(x) and Hessian V2 f(x)

» Example: evaluating f constitutes a run of a complicated simulation code
» Drawback: cannot exploit special structure underlying f

scipy.optimize

o] s vie, v

black-box function

scipy.optimize

scipy.optimize: local optimization algorithms

Unconstrained minimization

» Derivative free: no gradient or Hessian

» Nelder-Mead: simplex

» Powell: sequential minimization along each vector in a direction set
» Gradient-based: gradient only (no Hessian)

» CG: nonlinear conjugate gradient

» BFGS: quasi-Newton BFGS method
» Gradient-based: gradient and Hessian can be specified

> Newton-CG: approximately solves Newton system using CG (truncated Newton

method)
> dogleg: dog-leg trust-region algorithm. Hessian must be SPD
> trust-ncg: Newton conjugate gradient trust-region method

scipy.optimize

scipy.optimize: local optimization algorithms

Constrained minimization (all are gradient-based)

» Only bound constraints
» L-BFGS-B: limited memory BFGS bound constrained optimization
» TNC: truncated Newton allows for upper and lower bounds
P> General constraints
» COBYLA: Constrained Optimization BY Linear Approximation
» SLSQP: Sequential Least SQuares Programming

scipy.optimize

scipy.optimize: global optimization algorithms

Global optimization (all are derivative free)

P> basinhopping: stochastic algorithm by Wales and Doye,
> useful when the function has many minima separated by large barriers

> brute: brute force minimization over a specified range
> differential_evolution: an evolutionary algorithm

scipy.optimize

CVXPY

CVXPY

10

Outline

CVXPY

CVXPY

11

Modeling languages for convex optimization

» High-level language support for convex optimization has been developed recently
1. Describe problem in high-level language
2. Description automatically tranformed to standard form
3. Solved by standard solver, tranformed back
» Implementations:
> YALMIP, CVX (Matlab)
> CVXPY (Python)
» Convex.jl (Julia)
> Benefits:
» Easy to perform rapid prototyping
» Can exploit special structure because have full mathematical description
P> Let users focus on what their model should be instead of how to solve it
» No algorithm tuning or babysitting
» Drawbacks:
> Won't work if your problem isn't convex
» Need explicit mathematical formulas for the objective and constraints

VXPY
¢ » Thus, it cannot handle black-box functions

12

CVXPY

> CVXPY: “a Python-embedded modeling language for convex optimization
problems. It allows you to express your problem in a natural way that follows
the math, rather than in the restrictive standard form required by solvers.”

from cvxpy import *

x = Variable(n)

cost = sum_squares (A*x-b) + gamma*norm(x,1) # explicit formula!
prob = Problem(Minimize(cost, [norm(x,"inf") <=1]))

opt_val = prob.solve()

solution = x.value

P> solve method converts problem to standard form, solves and assignes opt_val
attributes

CVXPY

13

CVXPY usage

cvxpy.Problem: optimization problem

cvxpy.Variable: optimiation variable

cvxpy.Minimize: minimization function

cvxpy .Parameter: symbolic representations of constants
P can change the value of a constant without reconstructing the entire problem
> can enforce to be positive or negative on construction

Constraints simply Python lists

> Many functions implemented: see cvxpy.org website for list

vvyyvyy

v

CVXPY

14

http://www.cvxpy.org/en/latest/tutorial/functions/index.html

Complete CVXPY example

import cvxpy as cvx

Create two scalar optimization variables (CVXPY Variable)

x = cvx.Variable()

y = cvx.Variable()

Create two constraints (Python list)

constraints = [x + y == 1, x - y >= 1]

Form objective

obj = cvx.Minimize(cvx.square(x - y))

Form and solve problem

prob = cvx.Problem(obj, constraints)

prob.solve() # Returns the optimal value.

print("status:", prob.status)

print ("optimal value", prob.value)

print("optimal var", x.value, y.value)
CVXPY

15

Ensuring convexity

» CVXPY must somehow ensure the written optimization problem is convex. How?
» Disciplined convex programming (DCP)

» Defines conventions that ensure an optimization problem is convex

» Example: the positive sum of two convex functions is convex

» These rules are sufficient (but not necessary) for convexity

> Usage in CVXPY

P> must assess the sign and curvature of cvxpy.Variable and cvx.Parameter types:

> x.sign: returns sign of x
» x.curvature: returns the curvature of x

CVXPY

16

Example: quadratic_minimization.ipynb

Example: quadratic_minimization.ipynb

17

Outline

Example: quadratic_minimization.ipynb

Example: quadratic_minimization.ipynb

18

Explore minimization methods minimization

» Consider minimizing the quadratic function

n
fl@) =2 ai-(x;—1)
i=1
» Properties: convex, smooth, minimum at z* = (1,...,1)

» Let's compare method performance for:
1. Well-conditioned (narrow distribution of a;) v. ill-conditioned (wide distribution of a;)
2. Low-dimensional (n small) v. high-dimensional (n large)

Example: quadratic_minimization.ipynb

19

scipy.opt function implementation

» Must define function, and optionally gradient and Hessian
def fun(x):
return O.5*sum(np.multiply(quadratic_coeff,\
np.square(np.array(x)-np.ones(np.array(x) .size))))
def fun_grad(x):
return np.array(np.multiply(quadratic_coeff,np.array(x)\
-np.ones(np.array(x) .size)))
def fun_hess(x):
return np.diag(quadratic_coeff)

P> To solve, define initial guess x0 and invoke a solver with the functions as arguments:

res = opt.minimize(fun,x0,method='newton-cg',jac=fun_grad,hess=fun_hess)

Example: quadratic_minimization.ipynb 20

CVXPY setup

Assume we have already specified:

» dimension (int): number of optimization variable n
» quadratic_coeff (numpy.ndarray): array of a;

import cvxpy as cvx

x = cvx.Variable(dimension)

quadratic_coeff_cvx = cvx.Parameter(dimension,sign='Positive')
quadratic_coeff_cvx.value=quadratic_coeff

obj = cvx.Minimize(0.5*quadratic_coeff.T*cvx.square(x-1))
prob = cvx.Problem(obj)

prob.solve()

» Note that the objective has to be explicitly coded in CVXPY objective
» Cannot use black-box functions!

Example: quadratic_minimization.ipynb

21

Method comparison

We will compare:

» Global, no gradients
» differential_evolution
» Best performance: non-convex, low-dimensional. Noise okay!
» Local, no gradients:
> Nelder-Mead
> CG with finite-difference Jacobian approximations (CGfd)
» Best performance: well-conditioned, noise-free, low-dimensional
> Local, gradients:
> CG
» Best performance: well-conditioned, noise-free. High dimensions okay!
» Local, gradients and Hessians
P> newton-cg
> CVXPY (requires convexity)
» Best performance: noise-free. lll-conditioning, high dimensions okay!
Example: quadratic_minimization.ipynb 22

Low-dimensional, well-conditioned

> Low-dimension: n = 2 optimization variables
» Well-conditioned: a; =1,7=1,...,n

objective function

—92 0 .Zo\ew

0.
Yarjap)2 2, 4 -2

» This is the easiest case of alll

Example: quadratic_minimization.ipynb

23

Low-dimensional, well-conditioned

objective function

4 \\‘\\\\ * minimum
) \m\/_—ﬂ X initial guess
o
o ' ¢ Nelder-Mead
3
=
=
8
2
<
g
variable x
objective function
4 :\\\\ * minimum
) \\\u/\ X initial guess
o
. ' .Gt
)
o 2
=
2
z
g
0
Example: quadra 0 > ; -

variable

variable xo

variable o

objective function

*
o
—
K\ X

minimum
initial guess

variable

objective function

*

& —
%—\ x
.

minimum
initial guess
newton-cg

variable x|

24

Low-dimensional, well-conditioned

®
K 2
$ 1078 ®
8 Z e
g1 g 10
Z 1012 ke
® Z 10!
£ 1071 E
E S

CGA
CGfd
diff. evol.
CVXPY A
CG

CGfd
newton-cg
diff. evol.

newton-cg 4

Nelder-Mead

Nelder-Mead

» All methods find the minimum (computed solution close to z* = (1,1))
» Derivative-free methods (Nelder-Mead and differential evolution) very inefficient!
> CG more expensive when finite-difference gradient approximations used

Example: quadratic_minimization.ipynb

25

Low-dimensional, poorly conditioned

> Low-dimension: n = 2 optimization variables
» Poorly conditioned: a; = 1 have large variance (a1 = 1.2 x 104, ap = 1)

objective function

N o
L I S - N |

0.
Va“ablt?.z, 4 2@

» Slope is much Iarger in one direction relative to the other

ExatpHard 0. minimize in. direction 1 using only the gradient %

» The Hessian can help in thIS case!

Low-dimensional, poorly conditioned

variable zy

variable x5

Example: qua

objective function

4__‘ N * minimum
00— X initial guess
¢ Nelder-Mead
2
o - - e ---§=.
0 :
1.500 =2~
.
3000 KK
-2 E
-2 0 2 4 6
variable 2
objective function
4 [* minimum
5000 ——— X initial guess _|
e CGfd 4
2
Yo o . .
0
1.500 =—y
3.000 ¢
tic minimization 'iPy'n'h

-2
variable

variable o

variable xy

objective function
4 [* minimum
— 3.000 X initial guess _|
« CG 4
2
oo o . .
0
1.500 =——y
3000 ¢
-2 0 2 4
variable
objective function
4 - * minimum
— 3.000 X initial guess _|
* newton-cg |
2
* .
0
1.500 =y
3000 ¢
-2 4

variable x;

27

Low-dimensional, poorly conditioned

_
2

10%

H
9
L

H
S)
I

10?
10—10.

10134 10!

number of function evaluations

relative distance to solution z*

CG

newton-cg
Nelder-Mead
diff. evol.
CVXPY
newton-cg
Nelder-Mead

» All methods do a farily good job at finding the minimum

» newton-cg and CVXPY do the best by far (both use Hessian information)
» Hessian information helps ‘cure’ ill conditioning!

» Derivative-free methods (Nelder-Mead and differential evolution) very inefficient

Example: quadratic_minimization.ipynb 28

High-dimensional, poorly conditioned

» High(er)-dimension: n = 100 optimization variables (not truly high dimensional)
» Poorly conditioned: a; =1 have large variance (max; a;/ min; a; = 3.6 X 108)

objective function

0.00030
0003 | 0-00025
0002 | [0.00020
.0001 | 0.00015

0.00010

e 0.00005

0.
Vanab]ez,rl 4 -2

» Higher dimensions pose significant challenges to gradient-free methods

Example: quadratic_minimization.ipynb

High-dimensional, poorly conditioned

objective function objective function
0y o — oy —
* minimum .f 4 Qo] * minimum
10 X initial guess o / ot X initial guess
.
+ Nelder-Mead . / PR eel
& .
-.... 2
-
.
/’ 0 \\
-2 “
50 100 150 -2 0 2 4
variable x; variable x;
objective function objective function
)~ . o 0~ e
4 Qo * minimum 4 : o * minimum
X initial guess o X initial guess
CGfd * newton-cg
2
g *
0
o %y, 00y >
-2 0 2 4

variable x; variable z;

Example: quadratic_minimization.ipynb

High-dimensional, poorly conditioned

—_

<
= —_ = =
(=) = =) =)
w = = >

number of function evaluations
—
(=]
=

relative distance to solution z*

—
A

&}
O

CG

=
O
&)

CGfd
newton-cg
Nelder-Mead
diff. evol.
CVXPY
newton-cg
Nelder-Mead
diff. evol

» Nelder—Mead fails to find the minimum in 10,0000 function evaluations
» Differential evolution finds the minimum, but incurs > 10° function calls!
» CG w/ finite-difference gradients is very expensive (n + 1 function calls per gradient)
» newton-cg and CVXPY do extremely well (both use Hessian information)
Example: quadratic_minimization.ipynb 31

Lessons

» Gradient information helps “cure” high-dimensionality
» Gradients enable a good direction to be found in a high-dimensional space
» Without gradients, many function evaluations are needed to explore the space
» Finite-difference approximations of the Jacobian become expensive in high dimensions
(require n 4 1 function evaluations)
P> Hessian information helps “cure” ill conditioning!
» Hessians inform the optimizer of curvature; thus the optimizer deals with ill
conditioning directly
» lll-conditioned Hessians can still pose numerical problems

Example: quadratic_minimization.ipynb

32

Let's add noise

> Let's add sinusoidal noise to the function:

f(z) = Zai (=12 40b- [0 — zn:cos(%r(aci - 1))

i=1

» b controls the amount of additional noise

» For b > 0, the function is no longer convex!
» Many local minima
» Local methods may not find the global minimum!
» CVXPY not applicable

Example: quadratic_minimization.ipynb

33

Low-dimensional, well-conditioned, noisy

> Low-dimension: n = 2 optimization variables
» Well-conditioned: a; =1,7=1,...,n

objective function

-2

Variapy; 2 2 4 BN

> Many local minima in which to get “trapped”

Example: quadratic_minimization.ipynb

N = O o

34

Low-dimensional, well-conditioned, noisy

variable zy

objective function

X

minimum
initial guess
Nelder-Mead)

variable xo

variable

objective function
Z

m
X
[5]
3
=
®
2
%

*
X

o O
o O

2.000

L000

variable

minimum
initial guess '

CGfd 7

variable xy

variable o

objective function
:/(“‘”n/\J\/ * minimum

X initial guess ||

variable x;

objective function

* minimum
X initial guess |
newton-cg

variable x;

35

Low-dimensional, well-conditioned, noisy

10°

10?

number of function evaluations

relative distance to solution z*

CG

&}
&}

CGfd
newton-cg
Nelder-Mead
diff. evol

» All local methods get trapped in a local minimum
» CVXPY cannot be used

» differential evolution finds the closest solution,
» However, it requires over a thousand function evaluations!

Example: quadratic_minimization.ipynb

0
b
=
3

2
z
3]
=

Nelder-Mead

diff. evol.

36

High-dimensional (n = 100), well-conditioned, noisy

z 10°
(=}
x b=
10 2100
2 1]
E 9 x 10 z |
28x 107! 510
2 g
g7x107! =108
g bs
% 6 x 10~ <102
@ <o
% 5x 107! 5
® =10

CG

0
b
&
3

2
z
3]
=

newton-cg
Nelder-Mead
diff. evol
Nelder-Mead
diff. evol

> All local methods get trapped in a local minimum (again)
» CVXPY cannot be used (again)

» Differential evolution comes closest to finding the solution
» However, it requires over one million function evaluations!

Example: quadratic_minimization.ipynb

Lessons

Noise can make optimization very difficult!

Makes the problem non-convex, with many local minima

Local methods get trapped in a local minimum

Global methods are needed, but these perform poorly in high dimensions
Tools like CVXPY cannot be used

Lesson: avoid noisy functions by any means possible (e.g., smoothing,
convexification)

vVvvyyVvyy

Example: quadratic_minimization.ipynb 38

Recap

» Global, no gradients
» differential_evolution
» Best performance: non-convex, low-dimensional. Noise okay!
P Local, no gradients:
> Nelder-Mead
> CG with finite-difference Jacobian approximations (CGfd)
» Best performance: well-conditioned, noise-free, low-dimensional
» Local, gradients:
> CG
» Best performance: well-conditioned, noise-free. High dimensions okay!
P Local, gradients and Hessians
> newton-cg
> CVXPY (requires convexity)
» Best performance: noise-free. lll-conditioning, high dimensions okay!

Example: quadratic_minimization.ipynb 39

	scipy.optimize
	CVXPY
	Example: quadratic_minimization.ipynb

