
Unconstrained optimization

Nick Henderson, AJ Friend (Stanford University)
Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

1

Unconstrained optimization

Theory, methods, and software for problems exihibiting the characteristics below
I Convexity:

I convex: local solutions are global
I non-convex : local solutions are not global

I Optimization-variable type:
I continuous : gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained : simpler algorithms
I constrained: more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional : can solve even without gradients
I high-dimensional : requires gradients to be solvable in practice

2

Theory

Theory 3

Outline

Theory

Algorithms

Gradient-based algorithms

Derivative-free algorithms

Theory 4

Unconstrained optimization in one variable

minimize f(x)

I x ∈ R is a real-valued variable
I f(x) ∈ C2 : R→ R is the objective function, which returns a single real number

x

f(x)

I What is a solution to this problem?
Theory 5

What is a solution?

x

f (x)

I Global minumum: A point x? satisfying f(x?) ≤ f(x) for all x in the domain of
interest

I Strong local minumum: A point x? satisfying f(x?) < f(x) for all x in a
neighborhood of x?

I Weak local minumum: A point x? satisfying f(x?) ≤ f(x) for all x in a
neighborhood of x?

Theory 6

Convexity

I For a convex objective function in one variable,

f(αx+ βy) ≤ αf(x) + βf(y)

x

f(x)

x

f(x)

I Any local minimum is a global minimum!

Theory 7

Optimality conditions for single-variable minimization
I Necessary conditions for a weak local minimum:

I A1: f ′(x?) = 0
I A2: f ′′(x?) ≥ 0

I Sufficient conditions for a strong local minimum:
I B1: f ′(x?) = 0, and
I B2: f ′′(x?) > 0

I Stationary point: a point x? satisfying f ′(x?) = 0
I Saddle point: a stationary point that is not a local minimum or maximumx

f (x)

x

f (x)

A1 A2

B1, B2

f(x)

x

The gradient and Hessian are absolutely essential quantitiesTheory 8

Unconstrained optimization in multiple variables

minimize f(x)

I x ∈ Rn is an n-dimensional vector of real numbers
I f(x) ∈ C2 : Rn → R is the objective function, which returns a single real number
I The same notions of weak local, strong local, and global minima, as well as

convexity, extend to multiple dimensions

Theory 9

Derivatives in multiple dimensions
Vector of optimization variables:

x =
[
x1
x2

]
Gradient (i.e., first derivative) of f :

∇f(x) =

 ∂f
∂x1
∂f
∂x2

Hessian (i.e., second derivative) of f :

∇2f(x) =

∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

Theory 10

Stationary points

I Stationary point: a point x? satisfying ∇f(x?) = 0

!5

0

5

!5

0

5

!200

!150

!100

!50

0

x

!x
2
!4 y

2

y

! 5

0

5

! 6! 4! 20246

0

20

40

60

80

100

120

140

160

180

200

x

x
2
+4 y

2

y
! 5

0
5

! 5

0

5

! 200

! 150

! 100

! 50

0

50

x

x
2
! 4 y

2

y

Maximum Minimum Saddle point

Figure 1: Types of stationary points in two dimensions

Theory 11

Optimality conditions for multiple-variable minimization

Can simply extend the univariate conditions to multiple dimensions
I Necessary conditions for a weak local minimum:

I A1: ∇f(x?) = 0
I A2: ∇2f(x?) � 0
I ∇2f(x) � 0 means that all the eigenvalues of ∇2f(x) are non-negative

I Sufficient conditions for a strong local minimum:
I B1: ∇f(x?) = 0, and
I B2: ∇2f(x?) � 0
I ∇2f(x) � 0 means that all the eigenvalues of ∇2f(x) are strictly positive

Theory 12

Algorithms

Algorithms 13

Outline

Theory

Algorithms

Gradient-based algorithms

Derivative-free algorithms

Algorithms 14

Optimization algorithms

I We now know:
I What an unconstrained optimization problem is
I How to characterize local/global solutions using optimality conditions

I How do we compute these solutions?
I Analytically: only possible for very simple problems (e.g., Brachistochrone problem)
I Numerically: required for most practical problems

I Numerical optimization algorithms are used to numerically solve these problems
with computers

Algorithms 15

Optimization algorithms
I In general, we are mostly blind to the function we are trying to minimize.
I We can only compute the function f at a finite number of points, and each

evaluation may be computationally expensive

x

f (x)

x

f (x)

True function Observed function

I Derivative information (gradient ∇f and Hessian ∇2f) is sometimes available
I generally more expensive to compute
I can help a lot (determine optimality criteria)
I especially helpful in high dimensions (n large)

Algorithms 16

Optimization algoritihms
I Goals

I Practical: reasonable memory requirements
I Robust: low failure rate, convergence conditions are met
I Fast: convergence in a few iterations, low cost per iteration
I Application typically dictates specific requirements

I Algorithm design involves tradeoffs to achieve these goals
I Example: using derivatives may reduce number of iterations, but each iteration

becomes more expensive
I Algorithms are iterative in nature
I Categorization

I Gradient-based v. derivative-free
I Global v. local: aims to converge to a global or local minimum
I Gradient-based algorithms tend to be local, while derivative-free algorithms tend to be

global

Algorithms 17

Gradient-based algorithms

Gradient-based algorithms 18

Outline

Theory

Algorithms

Gradient-based algorithms

Derivative-free algorithms

Gradient-based algorithms 19

Gradient-based algorithms

I Imagine you are lost on a mountain in extremely thick fog

by MaryleeUSA (flickr)

I How would you get down (i.e., find the minimum)?
I Chances are, you would use the slope of the ground beneath you in some way to go

downhill and descend the mountain
I This is the approach taken by gradient-based algorithms

Gradient-based algorithms 20

Gradient-based algorithms: benefits and drawbacks

I Benefits
I Efficient for many variables (i.e., in high dimensions)
I Well-suited for smooth objective and constraint functions

I Drawbacks
I Requires computing the gradient (challenging in some cases)
I Convergence is only local (local optimization)

I Mitigated by using multiple initial guesses to find multiple local minima
I Can then choose the best local minimum

I Not well-suited for discrete optimization
I Not well-suited for noisy functions

I Second derivatives (Hessians) are also very valuable
I However, Hessians are n× n symmetric matrices, so expensive to construct and store
I If Hessians are needed, they are often approximated using quasi-Newton methods

Gradient-based algorithms 21

Gradient-based algorithms: framework
I At each iteration k, gradient-based methods compute both

1. a search direction pk, and
2. a step length αk (referred to as the learning rate in machine learning)

Algorithm 1 Gradient-based framework
Choose initial guess x0, set k ← 0
while (not converged) do

Choose direction pk and step length αk

(This often involves computing local information, e.g., ∇f(xk), ∇2f(xk))
xk+1 = xk + αkpk.
k ← k + 1

end while

Gradient-based algorithms 22

Gradient-based algorithms: overview

initial guess

compute local
information

done

satisfies
termination
conditions?

compute new
guess

x0

x∗

xk+1 = Ω(xk, gk, Hk, F)

gk = ∇F (xk)

Hk = ∇2F (xk)

x0

x1

x2

x∗

Gradient-based algorithms 23

Gradient-based algorithms: sketch

x

f(x)

Gradient-based algorithms 24

Gradient-based algorithms: sketch

x

f(x)

Gradient-based algorithms 25

Gradient-based algorithms: sketch

x

f(x)

Gradient-based algorithms 26

Gradient-based algorithms: sketch

x

f(x)

Gradient-based algorithms 27

Gradient-based algorithms: sketch

x

f(x)

Gradient-based algorithms 28

Gradient-based algorithms: two classes

There are two classes of gradient-based algorithms.
I Line-search methods:

1. compute pk to be a descent direction
2. compute αk to produce a sufficient decrease in the objective function

I Trust-region methods:
1. determine a maximum allowable step length (trust-region radius) ∆k,
2. compute step pk with ‖pk‖ ≤ ∆ using a model m(p) ≈ f(xk + p)
3. accept step if actual objective-function reduction is close to (or better than) the

model-preducted objective-function reduction, and set xk+1 = xk + pk (note αk = 1)
4. otherwise, reject step, set xk+1 = xk, and shrink trust-region radius such that

∆k+1 < ∆k

Gradient-based algorithms 29

Gradient-based algorithms: two classes

There are two classes of gradient-based algorithms.
I Line-search methods :

1. compute pk to be a descent direction
2. compute αk to produce a sufficient decrease in the objective function

I Trust-region methods:
1. determine a maximum allowable step length (trust-region radius) ∆k,
2. compute step pk with ‖pk‖ ≤ ∆ using a model m(p) ≈ f(xk + p)
3. accept step if actual objective-function reduction is close to (or better than) the

model-preducted objective-function reduction, and set xk+1 = xk + pk (note αk = 1)
4. otherwise, reject step, set xk+1 = xk, and shrink trust-region radius such that

∆k+1 < ∆k

Gradient-based algorithms 30

Line-search methods: convergence
Theorem (Sufficient conditions for convergence)
For sufficiently smooth, well-defined problems, sufficient conditions for convergence
lim

k→∞
‖∇fk‖ = 0 of line search methods are:

C1. pk are descent directions (pT
k∇f(xk) < 0)

C2. αk produces a sufficient decrease (satisfy the Wolfe conditions)

C2. Wolfe conditions (0 < c1 < c2 < 1):
I Decrease f : f(xk + αkpk) ≤ f(xk) + c1αk∇fT

k pk

I Increase ∇f : ∇f(xk + αkpk)T pk ≥ c2∇fT
k pk.

f(xk + αpk)

αacceptable acceptable
Gradient-based algorithms 31

Line-search methods: key steps

1. Choose search direction pk that is a descent direction (satisfy C1)
2. Choose step length αk that satsifies the Wolfe conditions (satisfy C2)

Gradient-based algorithms 32

Line-search methods: step 1 (gradient descent)
Choose search direction pk that is a descent direction (satisfy C1)

I Gradient descent (i.e., steepest descent): pk = −∇f(xk)
I Steepest direction downhill
I Advantages: only first-order information, always a descent direction, low storage
I Disadvantages: linear convergence rate, sensitive to variable scaling
I Stochastic gradient descent is an approximation of this yielding sublinear

convergence
I Conjugate gradient: pk = −∇f(xk) + βkpk−1

I βk computed to ensure pk and pk−1 are approximately conjugate (accounts for
previous progress)

I Linear (faster) convergence
I Advantages: only first-order information, low storage, more effective than steepest

descent and almost as simple to implement
I Disadvantages: linear convergence rate (but faster than steepest descent), sensitive

to variable scaling
Gradient-based algorithms 33

Line-search methods: step 1 (modified Newton’s method)

Choose search direction pk that is a descent direction (satisfy C1)
Recall that ∇f(x?) = 0 is a necessary condition for optimality
I This is just n nonlinear equations in n unknowns!
I Thus, we could apply Newton’s method to solve it and obtain quadratic

convergence!
I This would lead to pk = −(∇2f(xk))−1∇f(xk)
I If f is strongly convex quadratic and αk = 1, this converges in one iteration!

I Scale invariant: this holds regardless of variable scaling
I Natural step length: αk = 1
I The Hessian overcomes issues with ill-conditioning/poorly scaled variables

I However, pk is not guaranteed to be a descent direction (i.e., might not satisfy C1)
I So, we must modify Newton’s method to ensure pk is a descent direction

Gradient-based algorithms 34

Line-search methods: step 1 (modified Newton’s method)
I Modified Newton’s method: pk = −(∇2f(xk) + Ek)−1∇f(xk)

I if ∇2f(xk) + Ek is positive definite, then pk is a descent direction
I Thus, Ek is computed to ensure ∇2f(xk) + Ek is positive definite
I Advantages: quadratic convergence, scale invariant, natural step length
I Disadvantage: second-order information (expensive), large storage

I Quasi-Newton methods: pk = −(Bk)−1∇f(xk)
I Bk updated each iteration using the only the gradient to satisfy the secant condition

Bk+1(xk+1 − xk) = ∇fk+1 −∇fk

I Popular updates:
I Symmetric rank-one (SR1): enforces symmetry, rank 1
I Broyden, Fletcher, Goldfarb, Shanno (BFGS): enforces positive definiteness, rank 2

I Advantages: only first-order information, superlinear convergence, scale invariant,
natural step length, limited-memory variant L-BFGS ensures low storage

I Disadvantages: may not be a descent direction (e.g., if SR1), approximate Hessians
may be inaccurate and dense

Gradient-based algorithms 35

Line-search methods: step 2

Choose step length αk that satisfies the Wolfe conditions (satisfy C2)
I Backtracking:

I Goal: given pk find α such that f(xk + αpk) < f(xk).
I Procedure: start with initial guess α > 0 (use α = 1 for Newton’s method)
1. if f(xk + αpk) < f(xk), then return α, otherwise continue
2. decrease α by some factor 0 < δ < 1: α← δα
3. repeat

Gradient-based algorithms 36

Gradient-based algorithms: two classes

There are two classes of gradient-based algorithms.
I Line-search methods:

1. compute pk to be a descent direction
2. compute αk to produce a sufficient decrease in the objective function

I Trust-region methods :
1. determine a maximum allowable step length (trust-region radius) ∆k,
2. compute step pk with ‖pk‖ ≤ ∆ using a model m(p) ≈ f(xk + p)
3. accept step if actual objective-function reduction is close to (or better than) the

model-preducted objective-function reduction, and set xk+1 = xk + pk (note αk = 1)
4. otherwise, reject step, set xk+1 = xk, and shrink trust-region radius such that

∆k+1 < ∆k

Gradient-based algorithms 37

Trust-region methods: overview

I Trust region methods sequentially minimize an approximate, easy-to-solve model
within a local trust region

I The trust region is the region within which the approximate model is trusted
I The subproblem is often convex (sequential convex programming)

Newton step
(line search)

Trust region stepModel contours

xk

I If the step is unacceptable (inaccurate model), the size of the trust region is reduced
(we trust the model less) and minimization is repeated around the same point

Gradient-based algorithms 38

Trust region methods

I Trust region methods often use a quadratic model mk(p) of the true function
f(xk + p) at the point xk

mk(p) = fk + gT
k p+ 1

2p
TBkp

I If Bk is the exact Hessian, the difference between mk(p) and f(xk + p) is O(‖p‖3)
I At each trust-region step, the following constrained problem is approximately solved

for pk

minimize mk(p) subject to ‖p‖ ≤ ∆k

Gradient-based algorithms 39

Gradient-based algorithms for global optimization
I Gradient-based algorithms are best-suited for finding local minima: they “go

downhill” until local optimality conditions are satisfied
I To find multiple local minima (and hopefully the global minimum), gradient-based

methods can be run multiple times using different initial guesses

x

f(x)

I However even if we happen to find the global minimum, we cannot verify that we
have done so!

I This tuning/babysitting does not arise in convex optimization!

Gradient-based algorithms 40

Computation of gradients

I To implement gradient-based algorithms, derivative information must be computed
I There are three main ways to compute these gradients

1. Analytical (can use symbolic tools, e.g., Mathematica)
2. Finite differences
3. Automatic differentiation

Gradient-based algorithms 41

Finite differences
I We can approximate the gradient by evaluating the function several times when the

gradient is unavailable analytically
I Forward-difference: 1st-order accurate

∂f

∂xi
(x) = f(x+ εei)− f(x)

ε
+O(ε)

I Central-difference: 2nd-order accurate, but twice as expensive

∂f

∂xi
(x) = f(x+ εei)− f(x− εei)

2ε +O(ε2)

I Tradeoff:
I ε too large: inaccurate due to truncation error
I ε too small: inaccurate due to subtractive cancellation from round-off error

Gradient-based algorithms 42

Automatic differentiation

I Use computational representation of a function
I Key observations:

I Any function is composed of a sequence of simple operations
I The chain rule from calculus. For f(y(x(w))),

df

dw
= df

dy

dy

dx

dx

dw

I Performs differentiation on only basic operations
I Avoids subtractive cancellation
I Software tools (e.g. ADIFOR) do this automatically
I Backpropagation in deep learning is a specific case of automatic differentiation

Gradient-based algorithms 43

Derivative-free algorithms

Derivative-free algorithms 44

Outline

Theory

Algorithms

Gradient-based algorithms

Derivative-free algorithms

Derivative-free algorithms 45

Why derivative-free algorithms?

I Gradients may not be available
I f(x) from laboratory experiments
I impractical or cumbersome to implement analytic gradinets

I Noise or non-smoothness in the objective function
I this creates many local minima, so gradient information less useful
I require global optimization

I May want to direct effort globally (less information at more points) rather than
locally (more information at fewer points)

I Can use global optimization to define initial guesses for local optimization

Derivative-free algorithms 46

Benefits and drawbacks of derivative-free algorithms

I Benefits:
I Well-suited for discrete variables
I Often better at finding the global optimum (if non-convex)
I Robust with respect to noise in the function
I Useful for multi-objective optimization
I Amenable to parallelization

I Drawbacks:
I Extremely slow convergence in high dimensions (n large)
I Difficult to efficiently treat constraints

I Not typically used if gradients are available

Derivative-free algorithms 47

Derivative-free algorithm categorization

I Heuristic: use techniques inspired by nature (global optimization)
I Simulated annealing
I Basin hopping (Monte Carlo)
I Evolutionary techniques

I Genetic algorithms
I Differential evolution
I Swarm intelligence (particle swarm optimization, ant colony optimization)

I Direct search: query a sequence of nearby points (local optimization)
I Directional: coordinate search (e.g., Powell’s method), pattern search
I Simplicial: Nelder–Mead nonlinear simplex

Derivative-free algorithms 48

Evolutionary Algorithms
I Evolutionary algorithms were invented in the 1960’s by John Holland, who wanted

to better understand the evolution of life by computer simulation
I The algorithm is based on reproduction (recombination and mutation) and

selection (survival of the fittest)

Figure 2: Charles Darwin
Derivative-free algorithms 49

Evolutionary Algorithm

minimize f(x)

I A population member is represented by a point x in the variable space (its DNA)
I ‘Fitness’ is the objective function value f(x)
I At each iteration, rather than work with a single point, we consider an entire

population of points across the entire space
I Benefit: more likely to find a global optimum and won’t be “trapped” by local

minima
I Drawback: very expensive in high dimensions

Derivative-free algorithms 50

Overview of evolutionary algorithm

1. Initialize population
2. Determine mating pool
3. Generate children via crossover

I Continuous variables: interpolate
I Discrete variables: replace parts of their representing variables

4. Mutation (add randomness to the children’s variables)
5. Evaluate fitness of children
6. Replace worst parents with the children

Derivative-free algorithms 51

	Theory
	Algorithms
	Gradient-based algorithms
	Derivative-free algorithms

