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Optimization

Optimization find the best choice among a set of options subject to a set of constraints
Formulation in words:

minimize objective
by varying variables
subject to constraints
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Applications

I Portfolio optimization
I Objective: risk
I Variables: amount of capital to allocate to each available asset
I Constraints: total amount of capital available

I Transportation problems
I Objective: transportation cost
I Variables: routes to transport goods between warehouses and outlets
I Constraints: outlets receive proper inventory

I Model fitting (statistics and machine learning)
I Objective: error in model predictions over a training set
I Variables: parameters of the model
I Constraints: model complexity

Introduction 5



Applications

I Control (model predictive control)
I Objective: difference between model output and desired state over a time horizon
I Variables: control inputs (actuators)
I Constraints: control effort (maximum possible actuation force)

I Engineering design (see wing-design example)
I Objective: negative performance (maximize performance)
I Variables: design parameters
I Constraints: manufacturability
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Mathematical optimization: formulation

Standard form:
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

I x ∈ Rn: optimization/decision variable (to be computed)
I f0 : Rn → R: objective/cost function
I fi : Rn → R: inequality constraint functions
I hi : Rn → R: equality constraint functions
I Feasible set: D = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}
I Feasibility problem: Find x ∈ D (determines if the constraints are consistent)
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The big picture

I Bad news: most optimization problems (in full generality) cannot be solved
I Generally NP-hard
I Heuristics required, hand-tuning, luck, babysitting

I Good news:
I We can do a lot by modeling the problem as a simpler, solvable one
I Excellent computational tools are available:

I Modeling languages to write problems down (CVX, CVXPY, JuMP, AMPL, GAMS)
I Solvers to obtain solutions (IPOPT, SNOPT, Gurobi, CPLEX, Sedumi, SDPT3)

I Knowing a few key problem attributes facilitates navigating the large set of possible
tools and approaches
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Key challenge

Translate real-world problem into standard form
This requires balancing two competing objectives:
1. Representativeness

I Model should closely reflect the actual problem
I The solution should be useful

2. Solvability
I Exercise is useless if a solution cannot be computed
I Time-to-solution constraints (e.g., algorithmic trading) limit model complexity
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Friends and enemies in mathematical optimization

I Key problem attributes:
I Convexity: convex v. non-convex
I Optimization-variable type: continuous v. discrete
I Constraints: unconstrained v. constrained
I Number of optimization variables: low-dimensional v. high-dimensional

I These attributes dictate:
I Ability to find the solution
I Problem complexity and computing time
I Appropriate methods
I Relevant software

Always begin by categorizing your problem!
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Convex v. non-convex
I Convex problems:

I equality constraint functions are affine
I objective and inquality constraint functions are convex

g(αx+ βy) ≤ αg(x) + βg(y)
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convex non-convex

I Examples:
I Linear least squares (later today)
I Linear programming (LP): linear objective and constraints (management, finance)
I Quadratic programming (QP): quadratic objective, linear constraints.
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Convex v. non-convex
I Non-convex problems:

I objective function is nonconvex,
I inequality constraint functions are non-convex, or
I equality constraints are nonlinear

I Main issues:
1. Local minimum may not be a global minimium
2. Don’t know if we’ve solved the problem (even if we have found the global minimum)

f(x)

x

Figure 1: Local and global solutions for a non-convex objective function.
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Convex v. non-convex significance

I Convex
I One unique minimum: local minimizers are global!
I Theory: convexity theory is powerful
I Solution process: no algorithm tuning or babysitting
I Software: CVXPY, a modeling language for convex optimization

I Non-convex
I Possibly many local minima: Local minimum may not be global minimum
I Theory: most results ensure convergence to only a local minimum

I This means we have not really solved the problem!
I Solution process: often requires significant tuning and babysitting

I For example, use multiple starting points to try to find global minimum
I Software: scipy.optimize, a optimization sub-package of SciPy
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Continuous v. discrete

I Continuous
I For example, x ∈ Rn

I Often easier to solve because derivative information can be exploited
I Examples

I parameters in a machine-learning model
I asset allocation in portfolio optimization
I position in a coordinate system
I vehicle speed in a model to minimize fuel consumption
I wing thickness in aircraft design
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Continuous v. discrete examples

I Discrete
I For example, x ∈ {0, 1, 2, 3, . . .} or x ∈ {0, 1}
I Always non-convex
I Often NP-hard
I Often reformulated as a sequence of continuous problems (e.g., branch and bound)
I Sub-types: combinatorial optimization, integer programming

I Examples of discrete variables
I binary selector for facility location, e.g., xij = 1 if and only if resource i is placed in

location j and zero otherwise
I integer representing the number of warehouses to build
I integer representing the number of people allocated to a task
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Unconstrained v. constrained (domain)

unconstrained domain
(all points considered acceptable)

constrained domain
(only green points acceptable)

feasible region
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Unconstrained v. constrained (problem)

I Unconstrained problems
minimize f0(x)

I easier to solve
I Constrained problems

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

I linear equality constraints: can apply null-space/reduced-space methods to
reformulate as an unconstrained problem.

I otherwise: can apply interior-point methods, which reformulate as a sequence of
unconstrained problems
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Friends and enemies in mathematical optimization (summary)

I Convexity:
I convex: local solutions are global
I non-convex: local solutions are not global

I Optimization-variable type:
I continuous: gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained: simpler algorithms
I constrained: more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional: can solve even without gradients
I high-dimensional: requires gradients to be solvable in practice

Always begin by categorizing your problem!
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Single-objective v. multi-objective
I What if we care about two competing objectives f1 and f2?

I Example: f1=risk, f2=negative expected return
I Pareto front: set of candidate solutions among which no solution is better than

any other solution in both objectives

f1

f2

Each candidate solution is plotted in terms of both objectives.
Pareto-optimal points plotted in red

I Often solved using evolutionary algorithms
I Can also minimize the composite objective function for many different values of a:

minimize a · f1(x) + f2(x)
I this captures only points on the convex hull of the Pareto front

Optimization-problem attributes 21



This course
Theory, methods, and software for problems exihibiting the characteristics below

I Convexity:
I convex : local solutions are global
I non-convex : local solutions are not global

I Optimization-variable type:
I continuous : gradients facilitate computing the solution
I discrete: cannot compute gradients, NP-hard

I Constraints:
I unconstrained : simpler algorithms
I constrained : more complex algorithms; must consider feasibility

I Number of optimization variables:
I low-dimensional : can solve even without gradients
I high-dimensional : requires gradients to be solvable in practice
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