Introduction to Mathematical Optimization

Nick Henderson, AJ Friend (Stanford University) Kevin Carlberg (Sandia National Laboratories)

August 13, 2019

Introduction

Introduction

Introduction

Optimization-problem attributes

Introduction

Optimization find the best choice among a set of options subject to a set of constraints **Formulation in words**:

minimize objective by varying variables subject to constraints

Applications

Portfolio optimization

- Objective: risk
- Variables: amount of capital to allocate to each available asset
- Constraints: total amount of capital available

Transportation problems

- Objective: transportation cost
- Variables: routes to transport goods between warehouses and outlets
- Constraints: outlets receive proper inventory
- Model fitting (statistics and machine learning)
 - Objective: error in model predictions over a training set
 - ► Variables: parameters of the model
 - Constraints: model complexity

Applications

- Control (model predictive control)
 - ► *Objective*: difference between model output and desired state over a time horizon
 - Variables: control inputs (actuators)
 - Constraints: control effort (maximum possible actuation force)
- **Engineering design** (see wing-design example)
 - Objective: negative performance (maximize performance)
 - ► Variables: design parameters
 - Constraints: manufacturability

Mathematical optimization: formulation

Standard form:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- ▶ $x \in \mathbf{R}^n$: optimization/decision variable (to be computed)
- ▶ $f_0: \mathbf{R}^n \to \mathbf{R}$: objective/cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}$: inequality constraint functions
- ▶ $h_i: \mathbf{R}^n \to \mathbf{R}$: equality constraint functions
- ▶ Feasible set: $\mathcal{D} = \{x \in \mathbb{R}^n \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
- **Feasibility problem**: Find $x \in \mathcal{D}$ (determines if the constraints are consistent)

Introduction

The big picture

Bad news: most optimization problems (in full generality) cannot be solved

- Generally NP-hard
- Heuristics required, hand-tuning, luck, babysitting

Good news:

- We can do a lot by modeling the problem as a simpler, solvable one
- Excellent computational tools are available:
 - Modeling languages to write problems down (CVX, CVXPY, JuMP, AMPL, GAMS)
 - Solvers to obtain solutions (IPOPT, SNOPT, Gurobi, CPLEX, Sedumi, SDPT3)
- Knowing a few key problem attributes facilitates navigating the large set of possible tools and approaches

Key challenge

Translate real-world problem into standard form

This requires balancing two competing objectives:

1. Representativeness

- Model should closely reflect the actual problem
- The solution should be useful
- 2. Solvability
 - Exercise is useless if a solution cannot be computed
 - ▶ Time-to-solution constraints (e.g., algorithmic trading) limit model complexity

Optimization-problem attributes

Introduction

Optimization-problem attributes

Optimization-problem attributes

Friends and enemies in mathematical optimization

Key problem attributes:

- Convexity: convex v. non-convex
- Optimization-variable type: continuous v. discrete
- Constraints: unconstrained v. constrained
- Number of optimization variables: low-dimensional v. high-dimensional

These attributes dictate:

- Ability to find the solution
- Problem complexity and computing time
- Appropriate methods
- Relevant software

Always begin by categorizing your problem!

Convex v. non-convex

Convex problems:

- equality constraint functions are affine
- objective and inquality constraint functions are convex

Examples:

- Linear least squares (later today)
- Linear programming (LP): linear objective and constraints (management, finance)

Quadratic programming (QP): quadratic objective, linear constraints. Optimization-problem attributes

Convex v. non-convex

Non-convex problems:

- objective function is nonconvex,
- inequality constraint functions are non-convex, or
- equality constraints are nonlinear

Main issues:

- 1. Local minimum may not be a global minimium
- 2. Don't know if we've solved the problem (even if we have found the global minimum)

Figure 1: Local and global solutions for a non-convex objective function.

Convex v. non-convex significance

Convex

- One unique minimum: local minimizers are global!
- Theory: convexity theory is powerful
- Solution process: no algorithm tuning or babysitting
- Software: CVXPY, a modeling language for convex optimization

Non-convex

- Possibly many local minima: Local minimum may not be global minimum
- Theory: most results ensure convergence to only a local minimum
 - This means we have not really solved the problem!
- Solution process: often requires significant tuning and babysitting
 - ▶ For example, use multiple starting points to try to find global minimum
- Software: scipy.optimize, a optimization sub-package of SciPy

Continuous v. discrete

Continuous

- ▶ For example, $x \in \mathbf{R}^n$
- Often easier to solve because derivative information can be exploited

Examples

- parameters in a machine-learning model
- asset allocation in portfolio optimization
- position in a coordinate system
- vehicle speed in a model to minimize fuel consumption
- wing thickness in aircraft design

Continuous v. discrete examples

Discrete

- For example, $x \in \{0, 1, 2, 3, ...\}$ or $x \in \{0, 1\}$
- Always non-convex
- Often NP-hard
- Often reformulated as a sequence of continuous problems (e.g., branch and bound)
- Sub-types: combinatorial optimization, integer programming

Examples of discrete variables

- binary selector for facility location, e.g., $x_{ij} = 1$ if and only if resource *i* is placed in location *j* and zero otherwise
- integer representing the number of warehouses to build
- integer representing the number of people allocated to a task

Unconstrained v. constrained (domain)

Unconstrained v. constrained (problem)

Unconstrained problems

minimize $f_0(x)$

easier to solve

Constrained problems

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- linear equality constraints: can apply null-space/reduced-space methods to reformulate as an unconstrained problem.
- otherwise: can apply interior-point methods, which reformulate as a sequence of unconstrained problems

Friends and enemies in mathematical optimization (summary)

- Convexity:
 - convex: local solutions are global
 - non-convex: local solutions are not global
- Optimization-variable type:
 - continuous: gradients facilitate computing the solution
 - discrete: cannot compute gradients, NP-hard
- Constraints:
 - unconstrained: simpler algorithms
 - constrained: more complex algorithms; must consider feasibility
- Number of optimization variables:
 - Iow-dimensional: can solve even without gradients
 - high-dimensional: requires gradients to be solvable in practice

Always begin by categorizing your problem!

Single-objective v. multi-objective

- What if we care about two competing objectives f_1 and f_2 ?
 - *Example*: f_1 =risk, f_2 =negative expected return
- Pareto front: set of candidate solutions among which no solution is better than any other solution in both objectives

Each candidate solution is plotted in terms of both objectives.

Pareto-optimal points plotted in red

- Often solved using evolutionary algorithms
- Can also minimize the composite objective function for many different values of a:

minimize $a \cdot f_1(x) + f_2(x)$

Optimization-problem attributes

this captures only points on the **convex hull** of the Pareto front

This course

Theory, methods, and software for problems exihibiting the characteristics below

Convexity:

- convex : local solutions are global
- non-convex : local solutions are not global
- Optimization-variable type:
 - continuous : gradients facilitate computing the solution
 - discrete: cannot compute gradients, NP-hard

Constraints:

- unconstrained : simpler algorithms
- constrained : more complex algorithms; must consider feasibility
- Number of optimization variables:
 - Iow-dimensional : can solve even without gradients
 - high-dimensional : requires gradients to be solvable in practice

Optimization-problem attributes