
Outline and terminologies
First-order optimality: Unconstrained problems

First-order optimality: Constrained problems
Second-order optimality conditions

Algorithms

Lecture 3: Constrained Optimization

Kevin Carlberg

Stanford University

July 31, 2009

Kevin Carlberg Lecture 3: Constrained Optimization



Outline and terminologies
First-order optimality: Unconstrained problems

First-order optimality: Constrained problems
Second-order optimality conditions

Algorithms

1 First-order optimality: Unconstrained problems

2 First-order optimality: Constrained problems
Constraint qualifications
KKT conditions

Stationarity
Lagrange multipliers
Complementarity

3 Second-order optimality conditions
Critical cone
Unconstrained problems
Constrained problems

4 Algorithms
Penalty methods
SQP
Interior-point methods

Kevin Carlberg Lecture 3: Constrained Optimization



Outline and terminologies
First-order optimality: Unconstrained problems

First-order optimality: Constrained problems
Second-order optimality conditions

Algorithms

Constrained optimization

This lecture considers constrained optimization

minimize
x∈Rn

f (x)

subject to ci (x) = 0, i = 1, . . . , ne

dj(x) ≥ 0, j = 1, . . . , ni

(1)

Equality constraint functions: ci : Rn → R
Inequality constraint functions: dj : Rn → R
Feasible set:
Ω = {x | ci (x) = 0, dj(x) ≥ 0, i = 1, . . . , ne , j = 1, . . . , ni}
We continue to assume all functions are twice-continuously
differentiable
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What is a solution?

x

f(x)

Global minimum: A point x∗ ∈ Ω satisfying f (x∗) ≤ f (x)
∀x ∈ Ω

Strong local minimum: A neighborhood N of x∗ ∈ Ω exists
such that f (x∗) < f (x) ∀x ∈ N ∩ Ω.

Weak local minima A neighborhood N of x∗ ∈ Ω exists such
that f (x∗) ≤ f (x) ∀x ∈ N ∩ Ω.
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Convexity

As with the unconstrained case, conditions hold where any local
minimum is the global minimum:

f (x) convex

ci (x) affine (ci (x) = Aix + bi ) for i = 1, . . . , ne

dj(x) convex for j = 1, . . . , ni
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Active set

The active set at a feasible point x ∈ Ω consists of the
equality constraints and the inequality constraints for which
dj(x) = 0

A(x) = {ci}ni
i=1 ∪ {dj | dj(x) = 0}

x

f(x)

d2

d3d1

Ω
d4

x

Figure: A(x) = {d1, d3}
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Formulation of first-order conditions

Words
to first-order, the function cannot decrease by moving in feasible

directions
↓

Geometric description
description using the geometry of the feasible set

↓
Algebraic description

description using the equations of the active constraints

The algebraic description is required to actually solve
problems (use equations!)
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First-order conditions for unconstrained problems

Geometric description: a weak local minimum is a point x∗

with a neighborhood N such that f (x∗) ≤ f (x) ∀x ∈ N
Algebraic description:

f (x∗) ≤ f (x∗ + p), ∀p ∈ Rn “small” (2)

For f (x∗) twice-continuously differentiable, Taylor’s theorem is

f (x∗+p) = f (x∗)+∇f (x∗)T p + 1
2 pT∇2f (x∗+tp)p, t ∈ (0, 1)

Ignoring the O(‖p‖2) term, (2) becomes

0 ≤ f (x∗ + p)− f (x∗) ≈ ∇f (x∗)T p, ∀p ∈ Rn

Since pT
1 ∇f (x∗) > 0 implies that pT

2 ∇f (x∗) < 0 with
p2 = −p1, we know that strict equality must hold

→ This reduces to the first-order necessary condition:

∇f (x∗)T p = 0 ∀p ∈ Rn ⇒ ∇f (x∗) = 0 (stationary point)
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Constraint qualifications
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First-order conditions for constrained problems

Geometric description: A weak local minimum is a point x∗

with a neighborhood N such that f (x∗) ≤ f (x) ∀x ∈ N ∩ Ω

Definition (Tangent cone TΩ(x∗))

The set of all tangents to Ω at x∗.
(set of geometrically feasible directions, the limit of N ∩ Ω− x∗)

TΩ(x∗)

x∗

Ω

Using the tangent cone, we can begin to formulate the
first-order conditions algebraically
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First-order conditions for constrained problems

Geometric description (continued)

The limit of f (x∗) ≤ f (x), ∀x ∈ N ∩ Ω is

f (x∗) ≤ f (x∗ + p), ∀p ∈ TΩ(x∗) “small”

Using Taylor’s theorem and ignoring high-order terms, this
condition is

0 ≤ f (x∗ + p)− f (x∗) ≈ ∇f (x∗)T p, ∀p ∈ TΩ(x∗)

∇f (x∗)T p ≥ 0, ∀p ∈ TΩ(x∗) (3)

→ To first-order, the objective function cannot decrease in any
feasible direction
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Constraint qualifications

(3) is not purely algebraic since TΩ(x∗) is geometric

We require an algebraic description of the tangent cone in
terms of the constraint equations

Definition (Set of linearized feasible directions F(x))

Given a feasible point x and the active constraint set A(x),

F(x) =

{
p | p satisfies

{
∇ci (x)T p = 0 ∀i

∇dj(x)T p ≥ 0 ∀dj ∈ A(x)

}

The set of linearized feasible directions is the best algebraic
description available, but in general TΩ(x) ⊂ F(x)

Constraint qualifications are sufficient for TΩ(x) = F(x)
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Example
Consider the following problem

minimize
x∈Rn

f (x) = x

subject to d1(x) = x − 3 ≥ 0

x

f(x)

x∗ TΩ(x∗)
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x

∇f(x)

∇d1(x)

feasible descent

directions

Since d ′1(x∗) = 1, pd ′1(x∗) ≥ 0 for any p ≥ 0, and we have

F(x∗) = p, ∀p ≥ 0

Thus, F(x∗) = TΩ(x∗)
√
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Consider the mathematically equivalent reformulation

minimize
x∈Rn

f (x) = x

subject to d1(x) = (x − 3)3 ≥ 0

The solution x∗ = 3 and (geometric) tangent cone TΩ(x∗) are
unchanged

However, d ′1(x∗) = 3(3− 3)2 = 0 and pd ′1(x∗) ≥ 0 for any
p ∈ R (positive or negative), and we have

F(x∗) = p, ∀p ∈ R X

Thus, TΩ(x∗) ⊂ F(x∗), and directions in F(x∗) may actually
be infeasible!

Kevin Carlberg Lecture 3: Constrained Optimization



Outline and terminologies
First-order optimality: Unconstrained problems

First-order optimality: Constrained problems
Second-order optimality conditions

Algorithms

Constraint qualifications
KKT conditions

Constraint qualifications (sufficient for TΩ(x∗) = F(x∗))

Types

Linear independence constraint qualification (LICQ): the
set of active constraint gradients at the solution
{∇ci (x∗)}ni

i=1 ∪ {∇dj(x∗) | dj(x∗) ∈ A(∗x)} is linearly
independent
Linear constraints: all active constraints are linear functions

None of these hold for the last example

We proceed by assuming these conditions hold
(F(x) = TΩ(x)) ⇒ the algebraic expression F(x) can be used
to describe geometrically feasible directions at x
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Algebraic description

When constraint qualifications are satisfied, F(x) = TΩ(x)
and (3) is

∇f (x∗)T p ≥ 0, ∀p ∈ F(x∗) (4)

What form ∇f (x∗) ensures that (4) holds?

Equality constraints: if we set ∇f (x∗) =
ne∑
i=1

γi∇ci (x∗), then

∇f (x∗)T p =
∑ne

i=1 γi

(
∇ci (x∗)T p

)
= 0, ∀p ∈ F(x∗)

√

Inequality constraints: if we set ∇f (x∗) =
ni∑

j=1
λj∇dj(x∗)

with λj ≥ 0, then

∇f (x∗)T p =
∑ni

j=1 λj

(
∇dj(x∗)T p

)
≥ 0, ∀p ∈ F(x∗)

√
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Theorem (First-order necessary KKT conditions for local solutions)

If x∗ is a weak local solution of (1), constraint qualifications hold

∇f (x∗)−
ne∑
i=1

γi∇ci (x∗)−
ni∑

j=1

λj∇dj(x∗) = 0

λj ≥ 0, j = 1, . . . , ni

ci (x∗) = 0, i = 1, . . . , ne

dj(x∗) ≥ 0, j = 1, . . . , ni

λjdj(x∗) = 0, j = 1, . . . , ni

Stationarity, Dual feasibility, Primal feasibility (x∗ ∈ Ω),
Complementarity conditions, Lagrange multipliers γi , λj
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Intuition for stationarity

minimize
x∈Rn

f (x) = x2
1 + x2

2

subject to d1(x) = x1 + x2 − 3 ≥ 0x

f(x)

x∗ TΩ(x∗)

x

y
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∇d1(x∗) ∇f(x∗)

The solution is x∗ = (1.5, 1.5)
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Intuition for stationarity (continued)
The KKT conditions say ∇f (x∗) = λ1∇d1(x∗) with λ1 ≥ 0
Here, ∇f (x∗) = [3, 3]T , while ∇d1(x∗) = [1.5, 1.5]T , so these
conditions are indeed verified with λ1 = 2 ≥ 0
This is obvious from the figure: if ∇f (x∗) and ∇d1(x∗) were
“misaligned”, there would be some feasible descent directions!
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feasible descent
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This gives us some intuition for stationarity and dual feasibility
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Lagrangian

Definition (Lagrangian)

The Lagrangian for (1) is

L(x , γ, λ) = f (x)−
ne∑
i=1

γici (x)−
ni∑

j=1
λjdj(x)

Stationarity in the sense of KKT is equivalent to stationarity
of the Lagrangian with respect to x :

Lx(x , γ, λ) = ∇f (x)−
ne∑
i=1

γi∇ci (x)−
ni∑

j=1

λj∇dj(x)

KKT stationarity ⇔ Lx(x∗, γ, λ) = 0
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Lagrange multipliers

Lagrange multipliers γi and λj arise in constrained
minimization problems

They tell us something about the sensitivity of f (x∗) to the
presence of their constraints. γi and λj indicate how hard f is
“pushing” or “pulling” the solution against ci and dj .

If we perturb the right-hand side of the i th equality constraint
so that ci (x) ≥ −ε‖∇ci (x∗)‖, then

df (x∗(ε))

dε
= −γi‖∇ci (x∗)‖.

If the j th inequality is perturbed so dj(x) ≥ −ε‖∇dj(x∗)‖,

df (x∗(ε))

dε
= −λj‖∇di (x∗)‖.
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Constraint classification

Definition (Strongly active constraint)

A constraint is strongly active at if it belongs to A(x∗) and it has:

a strictly positive Lagrange multiplier for inequality constraints
(λj > 0)

a strictly non-zero Lagrange multiplier for equality constraints
(γi > 0)

Definition (Weakly active constraint)

A constraint is weakly active at if it belongs to A(x∗) and it has a
zero-valued Lagrange multiplier (γi = 0 or λj = 0)
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Constraint classification (continued)
Weakly active and inactive constraints “do not participate”

minimize
x∈Rn

f (x) = x2
1 + x2

2

subject to d1(x) = x1 + x2 − 3 ≥ 0 (strongly active)

d2(x) = x1 − 1.5 ≥ 0 (weakly active)

d3(x) = −x2
1 − 4x2

2 + 5 ≥ 0 (inactive)

x1

x2

!1 0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x

y

x = !1 sqrt(!1/4 x
2
+20/4), y = k

x∗

The solution is unchanged if d2 and d3 are removed, so
λ2 = λ3 = 0
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Intuition for complementarity

We just saw that non-participating constraints have zero
Lagrange multipliers

The complementarity conditions are

λjdj(x∗) = 0, j = 1, . . . , ni

This means that each inequality constraint must be either:

1 Inactive (non-participating): dj(x∗) > 0, λj = 0,
2 Strongly active (participating): dj(x∗) = 0 and λj > 0, or
3 Weakly active (active but non-participating): dj(x∗) = 0 and
λj = 0

Strict complementarity: either case 1 or 2 is true for all
constraints (no constraints are weakly active)
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Second-order optimality conditions

Second-order conditions for constrained optimization play a
“tiebreaking” role: determine whether “undecided” directions
for which pT∇f (x∗) = 0 will increase or decrease f .

We call these ambiguous directions the “critical cone”

Definition (Critical cone C(x∗, γ))

Directions that “adhere” to strongly active constraints and equality
constraints

C(x∗, γ) = {w ∈ F(x∗) | ∇dj(x∗)T w = 0,∀ j ∈ A(x∗) with λj > 0}

Note that λj > 0 implies the constraint will remain active even
when small changes are made to the objective function!
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Critical cone

For the problem

minimize
x∈Rn

f (x) = x2
1 + x2

2

subject to d1(x) = x1 + x2 − 3 ≥ 0

the critical cone is C(x∗, γ) = α(−1, 1), ∀α ∈ R
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Second-order conditions for unconstrained problems

Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)

A1. ∇f (x∗) = 0 (stationary point)
A2. ∇2f (x∗) is positive semi-definite (pT∇2f (x∗)p ≥ 0 for all
p 6= 0)

Theorem (Sufficient conditions for a strong local minimum)

B1. ∇f (x∗) = 0 (stationary point)
B2. ∇2f (x∗) > 0 is positive definite (pT∇2f (x∗)p > 0 for all
p 6= 0).

Kevin Carlberg Lecture 3: Constrained Optimization



Outline and terminologies
First-order optimality: Unconstrained problems

First-order optimality: Constrained problems
Second-order optimality conditions

Algorithms

Critical cone
Unconstrained problems
Constrained problems

Second-order conditions for constrained problems

We make an analogous statement for constrained problems,
but limit the directions p to the critical cone C(x∗, γ)

Theorem (Necessary conditions for a weak local minimum)

D1. KKT conditions hold
D2. pT∇2L(x∗, γ)p ≥ 0 for all p ∈ C(x∗, γ)

Theorem (Sufficient conditions for a strong local minimum)

E1. KKT conditions hold
E2. pT∇2L(x∗, γ)p > 0 for all p ∈ C(x∗, γ).
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Intuition for second-order conditions
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d1(x)
d1(x)

d1(x)

Case I Case 2

Case 3

Case 1: E1 and E2 are satisfied (sufficient conditions hold)
Case 2: D1 and D2 are satisfied (necessary conditions hold)
Case 3: D1 holds, D2 does not (necessary conditions failed)
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Next

We now know how to correctly formulate constrained
optimization problems and how to verify whether a given
point x could be a solution (necessary conditions) or is
certainly a solution (sufficient conditions)

Next, we learn algorithms that are use to compute solutions
to these problems
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Constrained optimization algorithms

Linear programming (LP)

Simplex method: created by Dantzig in 1947. Birth of the
modern era in optimization
Interior-point methods

Nonlinear programming (NLP)

Penalty methods
Sequential quadratic programming methods
Interior-point methods

Almost all these methods rely strongly on line-search and
trust region methodologies for unconstrained optimization
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Penalty methods

Penalty methods combine the objective function and
constraints

minimize
x∈Rn

f (x) s.t. ci (x) = 0, i = 1, . . . , ni

↓

minimize
x∈Rn

f (x) +
µ

2

ni∑
i=1

c2
i (x)

A sequence of unconstrained problems is then solved for µ
increasing
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Penalty methods example

Original problem:

minimize
x∈R2

f (x) = x2
1 + 3x2, s.t. x1 + x2 − 4 = 0
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Penalty methods example

Penalty formulation:

minimize
x∈R2

g(x) = x2
1 + 3x2 +

µ

2
(x1 + x2 − 4)2
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A valley is created along the constraint x1 + x2 − 4 = 0
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Sequential quadratic programming

Perhaps the most effective algorithm

Solve a QP subproblem at each iterate

minimize
p

1

2
pT∇2

xxL(xk , λk)p +∇f (xk)T p

subject to ∇ci (xk)Tp + ci (xk) = 0, i = 1, . . . , ne

∇dj(xk)T p + dj(xk) ≥ 0, j = 1, . . . , ni

When ni = 0, this is equivalent to Newton’s method on the
KKT conditions

When ni > 0, this corresponds to an “active set” method,
where we keep track of the set of active constraints A(xk) at
each iteration
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Interior-point methods

These methods are also known as “barrier methods,” because
they build a barrier at the inequality constraint boundary

minimize
p

f (x)− µ
m∑

i=1

log si

subject to ci (x) = 0, i = 1, . . . , ne

dj(x)− si = 0, j = 1, . . . , ni

Slack variables: si , indicates distance from constraint
boundary

Solve a sequence of problems with µ decreasing
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Interior-point methods example

Original problem:

minimize
x∈R2

f (x) = x2
1 + 3x2, s.t. − x1 − x2 + 4 ≥ 0
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Interior-point methods example

Interior-point formulation:

minimize
x∈R2

h(x) = x2
1 + 3x2 − log (−x1 − x2 + 4)

A barrier is created along the boundary of the inequality
constraint x1 + x2 − 4 = 0
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Summary

We now now something about:

Modeling and classifying unconstrained and constrained
optimization problems
Identifying local minima (necessary and sufficient conditions)
Solving the problem using numerical optimization algorithms

We next consider the case of PDE-constrained optimization,
which enables us to use to tools learned earlier (finite
elements) in optimal design and control settings, for example
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