Lecture 3: Constrained Optimization

Kevin Carlberg

Stanford University

July 31, 2009

1 First-order optimality: Unconstrained problems

2 First-order optimality: Constrained problems

- Constraint qualifications
- KKT conditions
 - Stationarity
 - Lagrange multipliers
 - Complementarity

3 Second-order optimality conditions

- Critical cone
- Unconstrained problems
- Constrained problems

4 Algorithms

- Penalty methods
- SQP
- Interior-point methods

Constrained optimization

This lecture considers constrained optimization

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}}{\text{minimize}} & f(x) \\ \text{subject to} & c_{i}(x) = 0, \quad i = 1, \dots, n_{e} \\ & d_{j}(x) \geq 0, \quad j = 1, \dots, n_{i} \end{array}$$
(1)

- Equality constraint functions: $c_i : \mathbb{R}^n \to \mathbb{R}$
- Inequality constraint functions: $d_j : \mathbb{R}^n \to \mathbb{R}$
- Feasible set:

$$\Omega = \{x \mid c_i(x) = 0, \ d_j(x) \ge 0, i = 1, \dots, n_e, \ j = 1, \dots, n_i\}$$

We continue to assume all functions are twice-continuously differentiable

Outline and terminologies

First-order optimality: Unconstrained problems First-order optimality: Constrained problems Second-order optimality conditions Algorithms

What is a solution?

- Global minimum: A point $x^* \in \Omega$ satisfying $f(x^*) \leq f(x)$ $\forall x \in \Omega$
- Strong local minimum: A neighborhood \mathcal{N} of $x^* \in \Omega$ exists such that $f(x^*) < f(x) \ \forall x \in \mathcal{N} \cap \Omega$.
- Weak local minima A neighborhood \mathcal{N} of $x^* \in \Omega$ exists such that $f(x^*) \leq f(x) \ \forall x \in \mathcal{N} \cap \Omega$.

Convexity

As with the unconstrained case, conditions hold where any local minimum is the global minimum:

■ *f*(*x*) convex

•
$$c_i(x)$$
 affine $(c_i(x) = A_i x + b_i)$ for $i = 1, \dots, n_e$

•
$$d_j(x)$$
 convex for $j = 1, \ldots, n_i$

Active set

The active set at a feasible point x ∈ Ω consists of the equality constraints and the inequality constraints for which d_j(x) = 0

$$\mathcal{A}(x) = \{c_i\}_{i=1}^{n_i} \cup \{d_j \mid d_j(x) = 0\}$$

Figure: $\mathcal{A}(x) = \{d_1, d_3\}$

Formulation of first-order conditions

Words

to first-order, the function *cannot decrease* by moving in feasible directions

Geometric description

description using the geometry of the feasible set

Algebraic description

description using the equations of the active constraints

 The algebraic description is required to actually solve problems (use equations!)

First-order conditions for unconstrained problems

Geometric description: a weak local minimum is a point x* with a neighborhood N such that f(x*) ≤ f(x) ∀x ∈ N
 Algebraic description:

$$f(x^*) \le f(x^* + p), \ \forall p \in \mathbb{R}^n \text{ "small"}$$
 (2)

- For $f(x^*)$ twice-continuously differentiable, Taylor's theorem is $f(x^*+p) = f(x^*) + \nabla f(x^*)^T p + \frac{1}{2}p^T \nabla^2 f(x^*+tp)p, \quad t \in (0,1)$
- Ignoring the $O(||p||^2)$ term, (2) becomes

$$0 \leq f(x^* + p) - f(x^*) \approx \nabla f(x^*)^T p, \ \forall p \in \mathbb{R}^n$$

- Since $p_1^T \nabla f(x^*) > 0$ implies that $p_2^T \nabla f(x^*) < 0$ with $p_2 = -p_1$, we know that strict equality must hold
- → This reduces to the first-order necessary condition: $\nabla f(x^*)^T p = 0 \ \forall p \in \mathbb{R}^n \Rightarrow \boxed{\nabla f(x^*) = 0}$ (stationary point)

Constraint qualifications KKT conditions

First-order conditions for constrained problems

■ Geometric description: A weak local minimum is a point x^* with a neighborhood \mathcal{N} such that $f(x^*) \leq f(x) \ \forall x \in \overline{\mathcal{N} \cap \Omega}$

Definition (Tangent cone $T_{\Omega}(x^*)$)

The set of all tangents to Ω at x^* .

(set of geometrically feasible directions, the limit of $\mathcal{N}\cap\Omega-x^*$)

 Using the tangent cone, we can begin to formulate the first-order conditions algebraically

Constraint qualifications KKT conditions

First-order conditions for constrained problems

• Geometric description (continued)

• The limit of $f(x^*) \leq f(x)$, $\forall x \in \mathcal{N} \cap \Omega$ is

$$f(x^*) \leq f(x^* + p), \ \forall p \in T_{\Omega}(x^*)$$
 "small"

Using Taylor's theorem and ignoring high-order terms, this condition is

$$0 \leq f(x^* + p) - f(x^*) \approx \nabla f(x^*)^T p, \ \forall p \in T_{\Omega}(x^*)$$
$$\boxed{\nabla f(x^*)^T p \geq 0, \ \forall p \in T_{\Omega}(x^*)}$$
(3)

 $\rightarrow\,$ To first-order, the objective function cannot decrease in any feasible direction

Constraint qualifications

- (3) is not purely algebraic since $T_{\Omega}(x^*)$ is geometric
- We require an *algebraic description* of the tangent cone in terms of the constraint equations

Definition (Set of linearized feasible directions $\mathcal{F}(x)$)

Given a feasible point x and the active constraint set $\mathcal{A}(x)$,

$$\mathcal{F}(x) = \left\{ p \mid p \text{ satisfies} \begin{cases} \nabla c_i(x)^T p = 0 & \forall i \\ \nabla d_j(x)^T p \ge 0 & \forall d_j \in \mathcal{A}(x) \end{cases} \right\}$$

- The set of linearized feasible directions is the best algebraic description available, but in general T_Ω(x) ⊂ F(x)
- Constraint qualifications are sufficient for $T_{\Omega}(x) = \mathcal{F}(x)$

Constraint qualifications KKT conditions

Example

Consider the following problem

Since $d'_1(x^*) = 1$, $pd'_1(x^*) \ge 0$ for any $p \ge 0$, and we have $\mathcal{F}(x^*) = p$, $\forall p \ge 0$

Thus,
$$\mathcal{F}(x^*) = T_{\Omega}(x^*)$$
 \checkmark

Constraint qualifications KKT conditions

Example

Consider the mathematically equivalent reformulation

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) = x\\ \text{subject to} & d_1(x) = (x-3)^3 \ge 0 \end{array}$$

- The solution x^{*} = 3 and (geometric) tangent cone T_Ω(x^{*}) are unchanged
- However, $d'_1(x^*) = 3(3-3)^2 = 0$ and $pd'_1(x^*) \ge 0$ for any $p \in \mathbb{R}$ (positive or negative), and we have

$$\mathcal{F}(x^*) = p, \quad \forall p \in \mathbb{R} \;\; \mathbf{X}$$

Thus, $T_{\Omega}(x^*) \subset \mathcal{F}(x^*)$, and directions in $\mathcal{F}(x^*)$ may actually be infeasible!

Constraint qualifications KKT conditions

Constraint qualifications (sufficient for $T_{\Omega}(x^*) = \mathcal{F}(x^*)$)

- Types
 - Linear independence constraint qualification (LICQ): the set of active constraint gradients at the solution $\{\nabla c_i(x^*)\}_{i=1}^{n_i} \cup \{\nabla d_j(x^*) \mid d_j(x^*) \in \mathcal{A}(*x)\}$ is linearly independent
 - Linear constraints: all active constraints are linear functions
- None of these hold for the last example
- We proceed by assuming these conditions hold (𝓕(𝑥) = 𝒯_Ω(𝑥)) ⇒ the algebraic expression 𝓕(𝑥) can be used to describe geometrically feasible directions at 𝑥

Constraint qualifications KKT conditions

Algebraic description

• When constraint qualifications are satisfied, $\mathcal{F}(x) = T_{\Omega}(x)$ and (3) is

$$\nabla f(x^*)^T p \ge 0, \ \forall p \in \mathcal{F}(x^*)$$
(4)

- What form $\nabla f(x^*)$ ensures that (4) holds?
- Equality constraints: if we set $\nabla f(x^*) = \sum_{i=1}^{n_e} \gamma_i \nabla c_i(x^*)$, then

$$abla f(x^*)^T p = \sum_{i=1}^{n_e} \gamma_i \left(\nabla c_i(x^*)^T p \right) = 0, \quad \forall p \in \mathcal{F}(x^*) \quad \checkmark$$

• Inequality constraints: if we set $\nabla f(x^*) = \sum_{j=1}^{n_i} \lambda_j \nabla d_j(x^*)$ with $\lambda_j \ge 0$ then

$$\nabla f(x^*)^T p = \sum_{j=1}^{n_i} \lambda_j \left(\nabla d_j(x^*)^T p \right) \ge 0, \quad \forall p \in \mathcal{F}(x^*) \quad \checkmark$$

Constraint qualifications KKT conditions

Theorem (First-order necessary KKT conditions for local solutions)

If x^* is a weak local solution of (1), constraint qualifications hold

$$\nabla f(x^{*}) - \sum_{i=1}^{n_{e}} \gamma_{i} \nabla c_{i}(x^{*}) - \sum_{j=1}^{n_{i}} \lambda_{j} \nabla d_{j}(x^{*}) = 0$$

$$\lambda_{j} \geq 0, \quad j = 1, \dots, n_{i}$$

$$c_{i}(x^{*}) = 0, \quad i = 1, \dots, n_{e}$$

$$d_{j}(x^{*}) \geq 0, \quad j = 1, \dots, n_{i}$$

$$\lambda_{j} d_{j}(x^{*}) = 0, \quad j = 1, \dots, n_{i}$$

■ Stationarity, Dual feasibility, Primal feasibility (x* ∈ Ω), Complementarity conditions, Lagrange multipliers γ_i, λ_j

Constraint qualifications KKT conditions

Intuition for stationarity

The solution is
$$x^* = (1.5, 1.5)$$

Kevin Carlberg Lecture 3: Constrained Optimization

Constraint qualifications KKT conditions

Intuition for stationarity (continued)

- The KKT conditions say $\nabla f(x^*) = \lambda_1 \nabla d_1(x^*)$ with $\lambda_1 \ge 0$
- Here, $\nabla f(x^*) = [3,3]^T$, while $\nabla d_1(x^*) = [1.5, 1.5]^T$, so these conditions are indeed verified with $\lambda_1 = 2 \ge 0$
- This is obvious from the figure: if $\nabla f(x^*)$ and $\nabla d_1(x^*)$ were "misaligned", there would be some feasible descent directions!

This gives us some intuition for stationarity and dual feasibility

Constraint qualifications KKT conditions

Lagrangian

Definition (Lagrangian)

The Lagrangian for (1) is

$$\mathcal{L}(x,\gamma,\lambda) = f(x) - \sum_{i=1}^{n_e} \gamma_i c_i(x) - \sum_{j=1}^{n_i} \lambda_j d_j(x)$$

Stationarity in the sense of KKT is equivalent to stationarity of the Lagrangian with respect to x:

$$\mathcal{L}_{x}(x,\gamma,\lambda) = \nabla f(x) - \sum_{i=1}^{n_{e}} \gamma_{i} \nabla c_{i}(x) - \sum_{j=1}^{n_{i}} \lambda_{j} \nabla d_{j}(x)$$

• KKT stationarity $\Leftrightarrow \mathcal{L}_x(x^*, \gamma, \lambda) = 0$

Lagrange multipliers

- Lagrange multipliers γ_i and λ_j arise in constrained minimization problems
- They tell us something about the *sensitivity* of f(x*) to the presence of their constraints. γ_i and λ_j indicate how hard f is "pushing" or "pulling" the solution against c_i and d_j.
- If we perturb the right-hand side of the i^{th} equality constraint so that $c_i(x) \ge -\epsilon \|\nabla c_i(x^*)\|$, then

$$\frac{df(x^*(\epsilon))}{d\epsilon} = -\gamma_i \|\nabla c_i(x^*)\|.$$

• If the j^{th} inequality is perturbed so $d_j(x) \ge -\epsilon \|\nabla d_j(x^*)\|$,

$$rac{df(x^*(\epsilon))}{d\epsilon} = -\lambda_j \|
abla d_i(x^*) \|.$$

Constraint qualifications KKT conditions

Constraint classification

Definition (Strongly active constraint)

A constraint is strongly active at if it belongs to $\mathcal{A}(x^*)$ and it has:

- a strictly positive Lagrange multiplier for inequality constraints $(\lambda_j > 0)$
- a strictly non-zero Lagrange multiplier for equality constraints (γ_i > 0)

Definition (Weakly active constraint)

A constraint is weakly active at if it belongs to $\mathcal{A}(x^*)$ and it has a zero-valued Lagrange multiplier ($\gamma_i = 0$ or $\lambda_j = 0$)

Constraint qualifications KKT conditions

Constraint classification (continued)

Weakly active and inactive constraints "do not participate"

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\operatorname{minimize}} & f(x) = x_1^2 + x_2^2 \\ \text{subject to} & d_1(x) = x_1 + x_2 - 3 \ge 0 \text{ (strongly active)} \\ & d_2(x) = x_1 - 1.5 \ge 0 \text{ (weakly active)} \\ & d_3(x) = -x_1^2 - 4x_2^2 + 5 \ge 0 \text{ (inactive)} \end{array}$$

The solution is unchanged if d_2 and d_3 are removed, so $\lambda_2 = \lambda_3 = 0$

Constraint qualifications KKT conditions

Intuition for complementarity

- We just saw that non-participating constraints have zero Lagrange multipliers
- The complementarity conditions are

 $\lambda_j d_j(x^*) = 0, \quad j = 1, \ldots, n_i$

- This means that each inequality constraint must be either:
 - 1 Inactive (non-participating): $d_j(x^*) > 0$, $\lambda_j = 0$,
 - **2** Strongly active (participating): $d_j(x^*) = 0$ and $\lambda_j > 0$, or
 - 3 Weakly active (active but non-participating): $d_j(x^*) = 0$ and $\lambda_j = 0$
- Strict complementarity: either case 1 or 2 is true for all constraints (no constraints are weakly active)

Critical cone Unconstrained problems Constrained problems

Second-order optimality conditions

- Second-order conditions for constrained optimization play a "tiebreaking" role: determine whether "undecided" directions for which $p^T \nabla f(x^*) = 0$ will increase or decrease f.
- We call these ambiguous directions the "critical cone"

Definition (Critical cone $C(x^*, \gamma)$)

Directions that "adhere" to strongly active constraints and equality constraints

$$\mathcal{C}(x^*,\gamma) = \{ w \in \mathcal{F}(x^*) \mid \nabla d_j(x^*)^T w = 0, \forall j \in \mathcal{A}(x^*) \text{ with } \lambda_j > 0 \}$$

Note that $\lambda_j > 0$ implies the constraint will remain active even when small changes are made to the objective function!

Critical cone Unconstrained problems Constrained problems

Critical cone

For the problem

the critical cone is $\mathcal{C}(x^*,\gamma) = \alpha(-1,1)$, $\forall \alpha \in \mathbb{R}$

Critical cone Unconstrained problems Constrained problems

Second-order conditions for unconstrained problems

Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)

A1. $\nabla f(x^*) = 0$ (stationary point) A2. $\nabla^2 f(x^*)$ is positive semi-definite $(p^T \nabla^2 f(x^*)p \ge 0$ for all $p \ne 0$)

Theorem (Sufficient conditions for a strong local minimum)

B1. $\nabla f(x^*) = 0$ (stationary point) B2. $\nabla^2 f(x^*) > 0$ is positive definite $(p^T \nabla^2 f(x^*)p > 0$ for all $p \neq 0$).

Critical cone Unconstrained problems Constrained problems

Second-order conditions for constrained problems

 We make an analogous statement for constrained problems, but limit the directions p to the critical cone C(x*, γ)

Theorem (Necessary conditions for a weak local minimum)

D1. KKT conditions hold D2. $p^T \nabla^2 \mathcal{L}(x^*, \gamma) p \ge 0$ for all $p \in \mathcal{C}(x^*, \gamma)$

Theorem (Sufficient conditions for a strong local minimum)

E1. KKT conditions hold E2. $p^T \nabla^2 \mathcal{L}(x^*, \gamma) p > 0$ for all $p \in \mathcal{C}(x^*, \gamma)$.

Critical cone Unconstrained problems Constrained problems

Intuition for second-order conditions

• **Case 1**: E1 and E2 are satisfied (sufficient conditions hold)

- **Case 2**: D1 and D2 are satisfied (necessary conditions hold)
- **Case 3**: D1 holds, D2 does not (necessary conditions failed)

Critical cone Unconstrained problems Constrained problems

Next

- We now know how to correctly formulate constrained optimization problems and how to verify whether a given point x could be a solution (necessary conditions) or is certainly a solution (sufficient conditions)
- Next, we learn algorithms that are use to *compute* solutions to these problems

Penalty methods SQP Interior-point methods

Constrained optimization algorithms

- Linear programming (LP)
 - Simplex method: created by Dantzig in 1947. Birth of the modern era in optimization
 - Interior-point methods
- Nonlinear programming (NLP)
 - Penalty methods
 - Sequential quadratic programming methods
 - Interior-point methods
- Almost all these methods rely strongly on line-search and trust region methodologies for unconstrained optimization

Penalty methods SQP Interior-point methods

Penalty methods

Penalty methods combine the objective function and constraints

$$egin{aligned} & \min_{x\in\mathbb{R}^n} \quad f(x) \quad ext{s.t. } c_i(x) = 0, \quad i = 1,\ldots,n_i \\ & \downarrow \\ & \min_{x\in\mathbb{R}^n} \quad f(x) + rac{\mu}{2}\sum_{i=1}^{n_i} c_i^2(x) \end{aligned}$$

A sequence of *unconstrained* problems is then solved for μ increasing

Penalty methods SQP Interior-point methods

Penalty methods example

Original problem:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad f(x) = x_1^2 + 3x_2, \quad \text{s.t. } x_1 + x_2 - 4 = 0$$

Penalty methods SQP Interior-point methods

Penalty methods example

Penalty formulation:

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad g(x) = x_1^2 + 3x_2 + \frac{\mu}{2}(x_1 + x_2 - 4)^2$$

• A valley is created along the constraint $x_1 + x_2 - 4 = 0$

Penalty methods SQP Interior-point methods

Sequential quadratic programming

- Perhaps the most effective algorithm
- Solve a QP subproblem at each iterate

$$\begin{array}{ll} \underset{p}{\text{minimize}} & \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}(x_k, \lambda_k) p + \nabla f(x_k)^T p \\ \text{subject to} & \nabla c_i(x_k) T p + c_i(x_k) = 0, \quad i = 1, \dots, n_e \\ & \nabla d_j(x_k)^T p + d_j(x_k) \ge 0, \quad j = 1, \dots, n_i \end{array}$$

- When n_i = 0, this is equivalent to Newton's method on the KKT conditions
- When *n_i* > 0, this corresponds to an "active set" method, where we keep track of the set of active constraints *A*(*x_k*) at each iteration

Interior-point methods

These methods are also known as "barrier methods," because they build a barrier at the inequality constraint boundary

$$\begin{array}{ll} \underset{p}{\text{minimize}} & f(x) - \mu \sum_{i=1}^{m} \log s_i \\ \text{subject to} & c_i(x) = 0, \quad i = 1, \dots, n_e \\ & d_j(x) - s_i = 0, \quad j = 1, \dots, n_i \end{array}$$

- Slack variables: s_i, indicates distance from constraint boundary
- Solve a sequence of problems with μ decreasing

Penalty methods SQP Interior-point methods

Interior-point methods example

Original problem:

$$\min_{x \in \mathbb{R}^2} \quad f(x) = x_1^2 + 3x_2, \quad \text{s.t.} \ -x_1 - x_2 + 4 \ge 0$$

Penalty methods SQP Interior-point methods

Interior-point methods example

Interior-point formulation:

$$\min_{x \in \mathbb{R}^2} \quad h(x) = x_1^2 + 3x_2 - \log(-x_1 - x_2 + 4)$$

■ A barrier is created along the boundary of the inequality constraint *x*₁ + *x*₂ − 4 = 0

Penalty methods SQP Interior-point methods

Summary

- We now now something about:
 - Modeling and classifying unconstrained and constrained optimization problems
 - Identifying local minima (necessary and sufficient conditions)
 - Solving the problem using numerical optimization algorithms
- We next consider the case of PDE-constrained optimization, which enables us to use to tools learned earlier (finite elements) in optimal design and control settings, for example