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Outline and terminologies

Constrained optimization

m This lecture considers constrained optimization

minimize f(x)
xER"?

subject to ¢i(x) =0, i=1,...,n (1)
di(x)>0, j=1,....n;

m Equality constraint functions: ¢; : R” — R
m Inequality constraint functions: d; : R” — R

m Feasible set:
Q={x|ci(x)=0, di(x)>0,i=1,...,ne, j=1,...,nj}
m We continue to assume all functions are twice-continuously
differentiable
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Outline and terminologies

What is a solution?

A
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m Global minimum: A point x* € Q satisfying f(x*) < f(x)
Vx € Q

m Strong local minimum: A neighborhood N of x* € Q exists
such that f(x*) < f(x) Vx e N N Q.

[ A neighborhood N of x* € Q exists such
that f(x*) < f(x) Vx e N N Q.
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Outline and terminologies

Convexity

As with the unconstrained case, conditions hold where any local
minimum is the global minimum:

m f(x) convex
m ci(x) affine (ci(x) = Aix + b;) for i =1,...,ne

m dj(x) convex for j =1,...,n;
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Outline and terminologies

Active set

m The active set at a feasible point x € Q consists of the

equality constraints and the inequality constraints for which
dj(x) = 0

A(x) = {ei}ily U{d; | di(x) = 0}

Figure: A(x) = {di, ds}
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Outline and terminologies

Formulation of first-order conditions

Words
to first-order, the function cannot decrease by moving in feasible
directions

!

Geometric description

description using the geometry of the feasible set

!

Algebraic description

description using the equations of the active constraints

m The algebraic description is required to actually solve
problems (use equations!)
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First-order optimality: Unconstrained problems

First-order conditions for unconstrained problems

m Geometric description: a weak local minimum is a point x*

with a neighborhood N such that f(x*) < f(x)

m Algebraic description:

f(x*) < f(x*+p), Yp € R" “small” (2)
m For f(x*) twice-continuously differentiable, Taylor's theorem is
f(x*+p) = f(x*)+VF(x*)Tp+3pT V2f(x*+tp)p, t € (0,1)
m Ignoring the O(||p||?) term, (2) becomes
0 < f(x* +p)—f(x*) = VF(x*) p, Vp € R"

m Since p/ Vf(x*) > 0 implies that p] Vf(x*) < 0 with
p2 = —p1, we know that strict equality must hold
— This reduces to the first-order necessary condition:

Vf(x*)Tp=0Vp e R" = |VFf(x*) = 0| (stationary point)



Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

First-order conditions for constrained problems

m Geometric description: A weak local minimum is a point x*

with a neighborhood A such that f(x*) < f(x) Vx €
Definition (Tangent cone Tqo(x*))

The set of all tangents to Q at x*.
(set of geometrically feasible directions, the limit of AN Q — x*)

® "

m Using the tangent cone, we can begin to formulate the
first-order conditions algebraically
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. P . Constraint qualifications
First-order optimality: Constrained problems KKT conditions

First-order conditions for constrained problems

m Geometric description (continued)
m The limit of f(x*) < f(x), Vx e N NQis

f(x*) < f(x* +p), Vp € Ta(x*) “small”

m Using Taylor's theorem and ignoring high-order terms, this
condition is

0.< f(x* +p) — F(x*) = VF(x)Tp, Vp € Ta(x")

[VF(x")Tp 20, ¥p € Ta(x") ©

— To first-order, the objective function cannot decrease in any
feasible direction
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Constraint qualifications

m (3) is not purely algebraic since Tq(x*) is geometric
m We require an algebraic description of the tangent cone in
terms of the constraint equations

Definition (Set of linearized feasible directions F(x))

Given a feasible point x and the active constraint set A(x),

(T p— ,
f(X)Z{p\psatisﬁes{VC'(X) p=0 Vi }

Vdi(x)Tp >0 Vd; € A(x)

m The set of linearized feasible directions is the best algebraic
description available, but in general Tq(x) C F(x)
m Constraint qualifications are sufficient for To(x) = F(x)
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Example
m Consider the following problem
mi){lei%%ize f(x)=x
subject to di(x) =x—-3>0

A

f(z)

113*

xr
m Since dj(x*) =1, pdj(x*) > 0 for any p > 0, and we have
F(x*)=p, ¥p>0
m Thus, F(x*) = Ta(x*) +/
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Example

m Consider the mathematically equivalent reformulation
minimize f(x) = x
x€eR"
subject to  di(x) = (x —3)° >0

m The solution x* = 3 and (geometric) tangent cone Tq(x*) are
unchanged

m However, dj(x*) = 3(3 — 3)2 = 0 and pdj(x*) > 0 for any
p € R (positive or negative), and we have

F(x*)=p, VpeR X

m Thus, To(x*) C F(x*), and directions in F(x*) may actually
be infeasible!
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Constraint qualifications (sufficient for To(x*) = F(x*))

m Types
m Linear independence constraint qualification (LICQ): the
set of active constraint gradients at the solution
{Ve(x)}, U{Vd(x") | di(x*) € A(x)} is linearly
independent
m Linear constraints: all active constraints are linear functions
m None of these hold for the last example

m We proceed by assuming these conditions hold
(F(x) = Ta(x)) = the algebraic expression F(x) can be used
to describe geometrically feasible directions at x
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Algebraic description

m When constraint qualifications are satisfied, F(x) = Tq(x)
and (3) is
VF(x*)Tp >0, Vp € F(x*) (4)

m What form Vf(x*) ensures that (4) holds?
m Equality constraints: if we set V{(x*) = i ~iVci(x*), then
i=1
Vix)Tp=3"17 (Vc(x*)Tp) =0, VpeF(x*) +/
m Inequality constraints: if we set Vf(x*) = Z A\iVdi(x*)
j=1
with \; > 0, then

VI(x*)Tp=37 0 (Vdi(x*)Tp) >0, Vpe F(x*) +/
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. P . Constraint qualifications
First-order optimality: Constrained problems KKT conditions

Theorem (First-order necessary KKT conditions for local solutions)

If x* is a weak local solution of (1), constraint qualifications hold

VF(x*) =Y 7iVei(x*) = AVdi(x*) =0
i=1 j=1

/\J‘ > 07 = ]., , N

¢(x)=0, i=1,...,n

di(x*) >0, j=1,....n;

m Stationarity, Dual feasibility, Primal feasibility (x* € Q),
, Lagrange multipliers ~;, A;
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Intuition for stationarity

minimize f(x) = xZ + x3
xeR"

subject to di(x) =x1 +x —3>0

m The solution is x* = (1.5,1.5)



Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Intuition for stationarity (continued)

m The KKT conditions say Vf(x*) = \{Vdi(x*) with Ay >0

m Here, VFf(x*) = [3,3]", while Vdy(x*) = [1.5,1.5]", so these
conditions are indeed verified with Ay =2 >0

m This is obvious from the figure: if Vf(x*) and Vd;(x*) were
“misaligned”, there would be some feasible descent directions!
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m This gives us some intuition for stationarity and dual feasibility
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Lagrangian

Definition (Lagrangian)

The Lagrangian for (1) is
L0607 2) = £x) = 2 mieil) = X, 4di)
i= Jj=

m Stationarity in the sense of KKT is equivalent to stationarity
of the Lagrangian with respect to x:

Lo(x,7,\) = ZW,VC, Z)\ Vd;(x

m KKT stationarity < L,(x*,v,\) =0



Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Lagrange multipliers

m Lagrange multipliers v; and \; arise in constrained
minimization problems

m They tell us something about the sensitivity of f(x*) to the
presence of their constraints. ; and J; indicate how hard f is
“pushing” or “pulling” the solution against ¢; and d;.

m If we perturb the right-hand side of the i*" equality constraint
so that c¢i(x) > —¢||Vei(x*)]|, then

df(x*(€)) _ gy
T de il Vei(x)]-
m If the j' inequality is perturbed so dj(x) > —¢||Vd;(x™)|,
df (x*(¢)) "
—gc = Alvax)l.
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Constraint classification

Definition (Strongly active constraint)

A constraint is strongly active at if it belongs to A(x*) and it has:
m a strictly positive Lagrange multiplier for inequality constraints
(A > 0)
m a strictly non-zero Lagrange multiplier for equality constraints
(vi > 0)

Definition (Weakly active constraint)

A constraint is weakly active at if it belongs to A(x*) and it has a
zero-valued Lagrange multiplier (i =0 or A\; = 0)
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Constraint classification (continued)
m Weakly active and inactive constraints “do not participate”

minimize f(x) = xZ + x3
x€ERN

subject to
da(x) = x1 — 1.5 > 0 (weakly active)
d3(x) = —x¥ — 4x3 + 5 > 0 (inactive)

Y

i

i

m The solution is unchanged if d» and ds; are removed, so
A =MA3=0
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Constraint qualifications
KKT conditions

First-order optimality: Constrained problems

Intuition for complementarity

m We just saw that non-participating constraints have zero
Lagrange multipliers

m The complementarity conditions are

m This means that each inequality constraint must be either:
Inactive (non-participating): dj(x*) >0, A\; =0,
Strongly active (participating): d;(x*) =0 and A\; > 0, or
Weakly active (active but non-participating): d;(x*) = 0 and
A =0
m Strict complementarity: either case 1 or 2 is true for all
constraints (no constraints are weakly active)
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Critical cone
Unconstrained problems
Second-order optimality conditions Constrained problems

Second-order optimality conditions

m Second-order conditions for constrained optimization play a
“tiebreaking” role: determine whether “undecided” directions
for which p" V£ (x*) = 0 will increase or decrease f.

m We call these ambiguous directions the “critical cone”

Definition (Critical cone C(x*,7))

Directions that “adhere” to strongly active constraints and equality
constraints

C(x*,7) = {w € F(x*) | Vdi(x*)Tw = 0,V € A(x*) with \; > 0}

Note that A; > 0 implies the constraint will remain active even
when small changes are made to the objective function!
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Critical cone
Unconstrained problems

Second-order optimality conditions Constrained problems

Critical cone

m For the problem

minimize f(x) = x? + x3
xeR"

subject to di(x) =x1+x—-3>0

the critical cone is C(x*,7) = a(-1,1), Va € R

of
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Critical cone
Unconstrained problems
Second-order optimality conditions Constrained problems

Second-order conditions for unconstrained problems

m Recall, second-order conditions for unconstrained problems

Theorem (Necessary conditions for a weak local minimum)

Al. Vf(x*) = 0 (stationary point)
A2. V2f(x*) is positive semi-definite (p" V2f(x*)p > 0 for all
p#0)

Theorem (Sufficient conditions for a strong local minimum)

B1. Vf(x*) = 0 (stationary point)
B2. V2f(x*) > 0 is positive definite (p” V2f(x*)p > 0 for all
p#0).
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Critical cone
Unconstrained problems
Second-order optimality conditions Constrained problems

Second-order conditions for constrained problems

m We make an analogous statement for constrained problems,
but limit the directions p to the critical cone C(x*,~)

Theorem (Necessary conditions for a weak local minimum)

D1. KKT conditions hold
D2. pTV2L(x*,y)p > 0 for all p € C(x*,~)

Theorem (Sufficient conditions for a strong local minimum)

E1. KKT conditions hold
E2. p"V2L(x*,v)p > 0 for all p € C(x*,7).
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Critical cone
Unconstrained problems
Second-order optimality conditions Constrained problems

Intuition for second-order conditions

i SVdr(z® Vdi(z*
xg dif= ) T2 dy (x) it )
Casel ™ . Case2 ™
Vdi(zt)

Case3 ™

m Case 1: EI and E2 are satisfied (sufficient conditions hold)
m Case 2: D1 and D2 are satisfied (necessary conditions hold)
m Case 3: D1 holds, D2 does not (necessary conditions failed)

Kevin Carlberg Lecture 3: Constrained Optimization



Critical cone
Unconstrained problems
Second-order optimality conditions Constrained problems

Next

m We now know how to correctly formulate constrained
optimization problems and how to verify whether a given
point x could be a solution (necessary conditions) or is
certainly a solution (sufficient conditions)

m Next, we learn algorithms that are use to compute solutions
to these problems
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Penalty methods
SQP
Interior-point methods

Algorithms

Constrained optimization algorithms

m Linear programming (LP)
m Simplex method: created by Dantzig in 1947. Birth of the
modern era in optimization
m Interior-point methods
m Nonlinear programming (NLP)

m Penalty methods
m Sequential quadratic programming methods
m Interior-point methods

m Almost all these methods rely strongly on line-search and
trust region methodologies for unconstrained optimization
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Penalty methods
SQP

Interior-point methods

Algorithms

Penalty methods

m Penalty methods combine the objective function and
constraints

minimize f(x) s.t.c(x)=0, i=1,...,n;
x€R"
l
iy £0)+5 3 A

m A sequence of unconstrained problems is then solved for p
increasing
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Penalty methods

SQP

Interior-point methods
Algorithms

Penalty methods example

m Original problem:

minimize f(x) = x¥ +3x, st.x+x—4=0
x€R?
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Penalty methods
SQP

Interior-point methods

Algorithms

Penalty methods example

m Penalty formulation:

minimize g(x) = x¥ + 3xp + H(Xl + xp — 4)?
x€R? 2

9(x)

m A valley is created along the constraint x; +x —4 =10
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Penalty methods
sQP

Interior-point methods

Algorithms

Sequential quadratic programming

m Perhaps the most effective algorithm
m Solve a QP subproblem at each iterate
1
minimize EpTV)%X/J(xk, M)p + V() p
p
subject to  Vei(xk)Tp+ ci(xk) =0, i
Vdi(xi)Tp+ dj(xi) > 0,

1,...,ne

] = 1, NN IH

m When n; = 0, this is equivalent to Newton's method on the
KKT conditions

m When n; > 0, this corresponds to an “active set” method,
where we keep track of the set of active constraints A(x) at

each iteration
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Penalty methods
SQP
Interior-point methods

Algorithms

Interior-point methods

m These methods are also known as “barrier methods,” because
they build a barrier at the inequality constraint boundary

m

minimize f(x)— pu Z log s;

p
i=1

subject to ¢i(x)=0, i=1,...,n
di(x)—si=0, j=1,...,n

m Slack variables: s;, indicates distance from constraint
boundary

m Solve a sequence of problems with . decreasing
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Penalty methods

SQP

Interior-point methods
Algorithms

Interior-point methods example

m Original problem:

minimize f(x) =xZ +3x2, st. —x1—x+4>0
x€R?
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Penalty methods
SQP
Interior-point methods

Algorithms

Interior-point methods example

m Interior-point formulation:

minimize h(x) = x? + 3xo — log (—x1 — xo + 4)
x€eR?

m A barrier is created along the boundary of the inequality
constraint x; +xo —4 =10
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Penalty methods
SQP
Interior-point methods

Algorithms

Summary

m We now now something about:
m Modeling and classifying unconstrained and constrained
optimization problems
m |dentifying local minima (necessary and sufficient conditions)
m Solving the problem using numerical optimization algorithms
m We next consider the case of PDE-constrained optimization,
which enables us to use to tools learned earlier (finite
elements) in optimal design and control settings, for example
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