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Unconstrained optimization

This lecture considers unconstrained optimization

minimize
x∈Rn

f (x)

Things become significantly more complicated with
constraints!
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Univariate minimization

Consider the unconstrained minimization of a function in one
dimension

minimize
x∈R

f (x) (1)

In this class, we assume all functions are “sufficiently smooth”
(twice-continuously differentiable)

x

f(x)

What is a solution to (1)?
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What is a solution?

x

f (x)

Global minimum: A point x∗ satisfying f (x∗) ≤ f (x) ∀x ∈ R
Strong local minimum: A neighborhood N of x∗ exists such
that f (x∗) < f (x) ∀x ∈ N .

Weak local minima A a neighborhood N of x∗ exists such
that f (x∗) ≤ f (x) ∀x ∈ N .
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Convexity

For convex objective functions in one variable,

f (αx + βy) ≤ αf (x) + βf (y)

x

f(x)

x

f(x)

In this case, any local minimum is a global minimum!
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Optimality conditions for univariate minimization

Theorem (Necessary conditions for a weak local minimum)

A1. f ′(x∗) = 0 (stationary point)
A2. f ′′(x∗) ≥ 0.

Theorem (Sufficient conditions for a strong local minimum)

B1. f ′(x∗) = 0 (stationary point) and
B2. f ′′(x∗) > 0.

x

f ( x )

x

f ( x )

A1 A2

B1, B2
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Optimality conditions for univariate minimization

Maxima

Saddle points

Weak minima

A1

A2

B1, B2
Strong minima
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Multivariate minimization

Now, consider the unconstrained minimization of a
twice-continuously differentiable function in n dimensions

minimize
x∈Rn

f (x) (2)
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The same notions of weak local, strong local, and global
minima, as well as convexity, extend to multiple dimensions.
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Stationary points

Definition (Stationary point)

A stationary point x∗ of the function f is any point satisfying
∇f (x∗) = 0.
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Figure: Types of stationary points in multi-dimensions
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Optimality conditions for multivariate minimization

In multiple dimensions, the conditions are simply the multivariate
extensions of the univariate conditions

Theorem (Necessary conditions for a weak local minimum)

A1. ∇f (x∗) = 0 (stationary point)
A2. ∇2f (x∗) is positive semi-definite (pT∇2f (x∗)p ≥ 0 for all
p 6= 0)

Theorem (Sufficient conditions for a strong local minimum)

B1. ∇f (x∗) = 0 (stationary point)
B2. ∇2f (x∗) > 0 is positive definite (pT∇2f (x∗)p > 0 for all
p 6= 0).
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Optimality conditions for multivariate minimization

Maxima

Saddle points

Weak minima

A1

A2

B1, B2
Strong minima
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Optimization algorithms

We now know what a mathematical optimization problem is,
and we can characterize local and global solutions using the
optimality conditions.

How do we compute these solutions?

Analytically: only possible for some simple problems (e.g.
Brachistochrone problem, univariate minimization)
Numerically: required for most engineering optimization
problems (too large and complex to solve analytically)

→ Numerical optimization algorithms are used to numerically
solve these problems with computers
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Optimization algorithms

In general, we are mostly blind to the function we are trying
to minimize. We can only compute the function f at a finite
number of points, and each evaluation is expensive

x

f (x)

x

f (x)

True function Observed function

Higher-order information (gradient ∇f and Hessian ∇2f ) is
sometimes available at these points, but is more expensive to
compute
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Optimization algorithms

Goals

Robust: low failure rate, convergence conditions are met
Fast: convergence in a few iterations and low cost per iteration
Feasible: reasonable memory requirements

Algorithm design involves tradeoffs to achieve these goals
(e.g. using high-order information may lead to fewer
iterations, but each iteration becomes more expensive)

Algorithms are iterative in nature

Categorization

Gradient-based v. Derivative-free
Global v. local
Gradient-based algorithms tend to be local, while
derivative-free algorithms tend to be global
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Gradient-based algorithms

Imagine you are lost on a mountain in extremely thick fog

by MaryleeUSA (flickr)

How would you get down?

Chances are, you would use the slope of the ground beneath
you in some way to go downhill and descend the mountain

This is the approach taken by gradient-based algorithms
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Benefits and drawbacks of gradient-based algorithms

Benefits

Efficient for many variables
Well-suited for smooth objective and constraint functions
Efficient computation of gradients possible for
PDE-constrained problems

Drawbacks

Convergence is only local
→ Mitigated by using multiple starting points to find multiple

local minima, and hopefully the global minimum
Not well-suited for discrete optimization

→ Mitigated by reformulating discrete problems as continuous
(e.g. branch and bound methods)
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Framework

Gradient-based methods compute both a direction pk and a
step length αk at each iteration k

Algorithm 1 Gradient-based framework

Choose initial variables x0, k = 0
while (not converged) do

Choose direction pk and step length αk

xk+1 = xk + αkpk

k ← k + 1
end while

Line search methods: 1) compute pk , 2) compute αk

Trust region methods: 1) compute a maximum step length,
2) compute pk and actual step length αk
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Theorem (Sufficient conditions for global convergence)

For sufficiently smooth, well-defined problems, sufficient conditions
for global convergence lim

k→∞
‖∇fk‖ = 0 of line search methods are:

C1. pk are descent directions (pT
k ∇f (xk) < 0)

C2. αk produce a sufficient decrease (satisfy the Wolfe conditions)

C2. Wolfe conditions (0 < c1 < c2 < 1):

Decrease f : f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk ,

Increase ∇f : ∇f (xk + αkpk)T pk ≥ c2∇f T
k pk .

f(xk + αpk)

αacceptable acceptable
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1 Choose pk that is a descent direction (C1)

Steepest descent: First-order, linear convergence
Conjugate gradient: First-order, linear (faster) convergence
Newton: Second-order, quadratic convergence
Quasi-Newton: First-order to approximate second-order,
superlinear convergence

2 Choose step length αk satisfying the Wolfe conditions (C2)

1 Bracketing: find an interval containing a good step length
2 Bisection/interpolation: compute a good step in this interval
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1 Choose pk that is a descent direction (C1)
Steepest descent: First-order, linear convergence
Conjugate gradient: First-order, linear (faster) convergence
Newton: Second-order, quadratic convergence
Quasi-Newton: First-order to approximate second-order,
superlinear convergence

2 Choose step length αk satisfying the Wolfe conditions (C2)

1 Bracketing: find an interval containing a good step length
2 Bisection/interpolation: compute a good step in this interval
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Steepest descent

This is what you would likely do if stranded on the mountain

Steepest descent chooses the fastest downhill direction

pk = −∇f (xk)

Advantages: only first-order information is required, always a
descent direction, low storage

Disadvantages: slow on difficult problems, sensitive to
scaling
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Conjugate gradient (CG)

CG methods “correct” the steepest descent direction

pk = −∇f (xk) + βkpk−1

βk computed to make pk and pk−1 (approximately)
conjugate, which allows the method to (better) account for
previous progress

Advantages: more effective than steepest descent and almost
as simple to implement, only first-order information is
required, low storage

Disadvantages: moderate convergence rate, sensitive to
scaling

Kevin Carlberg Lecture 2: Unconstrained Optimization



Outline
Optimality conditions

Algorithms
Gradient-based algorithms
Derivative-free algorithms

Line search methods
Trust region methods
Global optimization
Computation of gradients

Newton

Theorem (Taylor’s theorem)

For f twice-continuously differentiable,

∇f (x + p) = ∇f (x) +∇2f (x)p +
∫ 1
0

[
∇2f (x + tp)−∇2f (x)

]
pdt

By setting ∇f (x + p) = 0 (want a stationary point) and
ignoring the o(‖p‖) integral, we can solve for pk

pk = −(∇2f (x))−1∇f (x)

Advantages: Quadratic convergence, natural step length,
insensitive to scaling

Disadvantages: Requires second-order information, may not
be a descent direction, must store Hessians
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Newton’s method with Hessian modification

If ∇2f (xk) is not positive definite, the Newton step may not
be a descent direction

pT
k ∇f (xk) = −∇f (xk)T

(
∇2f (xk)

)−1∇f (xk)

Since descent directions (and Wolfe condition satisfaction) are
sufficient for global convergence, we would like to use a
modified Hessian that is positive definite.
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Algorithm 2 Hessian modification

Choose initial variables x0, k = 0
while (not converged) do

Compute Bk = ∇2f (xk) + Ek , where Ek makes Bk sufficiently
positive definite
Solve Bkpk = −∇f (xk)
Compute αk to satisfy the Wolfe conditions
xk+1 = xk + αkpk , k ← k + 1

end while

Kevin Carlberg Lecture 2: Unconstrained Optimization



Outline
Optimality conditions

Algorithms
Gradient-based algorithms
Derivative-free algorithms

Line search methods
Trust region methods
Global optimization
Computation of gradients

Quasi-Newton

In many cases, it is not possible or too expensive to compute
the exact Hessian ∇2f (xk)

Quasi-Newton methods approximate the Hessian by some
matrix Bk ≈ ∇2f (xk)

Bk is updated at each iteration using only first-order
information

Advantages: Superlinear convergence, no second-order
information explicitly calculated, natural step length,
insensitive to scaling

Disadvantages: may not be a descent direction, approximate
Hessians may not be accurate, approximate Hessians can be
dense even if true Hessian is sparse (bad for large-scale
problems)
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Quasi-Newton updates
Secant condition: should be satisfied by the update to Bk

(from Taylor’s theorem neglecting the o(‖p‖) integral term)

Bk+1 (xk+1 − xk) = ∇fk+1 −∇fk

We can impose other conditions on Bk such as symmetry and
positive definiteness

1 Symmetric rank-one update (SR1): Enforce symmetry

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk

2 Broyden, Fletcher, Goldfarb, and Shanno (BFGS):
Enforce symmetry, positive definiteness, rank-two update

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk
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1 Choose pk that is a descent direction (C1)

Steepest descent: First-order, linear convergence
Conjugate gradient: First-order, linear (faster) convergence
Newton: Second-order, quadratic convergence
Quasi-Newton: First-order to approximate second-order,
superlinear convergence

2 Choose step length αk satisfying the Wolfe conditions
(C2)

1 Bracketing: find an interval containing a good step length
2 Bisection/interpolation: compute a good step in this interval
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Step-length selection

Want to compute an αk that satisfies the Wolfe conditions

This amounts to an inexact line search

Assume pk is a descent direction
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Step-length selection

1 Bracketing: find an interval containing a good step length

2 Bisection/interpolation: compute a good step in this interval
1 Use only function values

Fibonacci search
Golden Section serach

→ less efficient, cannot verify Wolfe conditions

2 Use function values and the gradient

Quadratic or cubic interpolation
A root-finding algorithm (find root of ∇f (x + αkpk))

→ more efficient, can verify Wolfe conditions

Newton and Quasi-Newton methods have a “natural” step
length αk = 1 (this minimizes convex, quadratic functions)

p. 60–61 of Nocedal & Wright contains a good algorithm
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Trust region methods

Line search methods: 1) compute pk , 2) compute αk

Trust region methods: 1) compute a maximum step length,
2) compute pk and actual step length αk
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Trust region methods

Trust regions define a region within which they trust the
accuracy of a quadratic model, then minimize the model in
this region

Newton step
(line search)

Trust region stepModel contours

xk

If the step is unacceptable (inaccurate model), the size of the
region is reduced (we trust the model less)
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Trust region methods

Trust region methods use a quadratic model mk(p) of the
true function f (xk + p) at the point xk

mk(p) = fk + gT
k p + 1

2pT Bkp

If Bk is the exact Hessian, the difference between mk(p) and
f (xk + p) is O(‖p‖3)

At each trust-region step, the following constrained problem is
approximately solved for pk

minimize
p∈Rn

mk(p) s.t. ‖p‖ ≤ ∆k (3)
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Actual reduction to predicted reduction ratio

The quality of mk(p) is assessed by the actual to predicted
reduction ratio

ρk =
f (xk)− f (xk + pk)

mk(0)−mk(pk)

ρk small: the model over-predicts the decrease in objective
function (get worse-than-predicted answer)

ρk large: the model under-predicts the decrease in objective
function (get better-than-predicted answer)

The logic employed by trust region methods says that an
under-prediction is good, and we should trust our model more
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Algorithm 3 Trust region

Choose initial variables x0, k = 0
while (not converged) do

Obtain pk by approximately solving Eq. (3)
Evaluate the ratio ρk

if ρk < 1/4 then
Reject step xk+1 = xk

Shrink trust region (trust the model less)
else if 1/4 ≤ ρk ≤ 3/4 then

Accept step xk+1 = xk + αkpk

else
Accept step xk+1 = xk + αkpk

Grow the trust region (trust the model more)
end if
k ← k + 1

end while
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Solving the quadratic subproblem

Algorithm 4 Trust region

Choose initial variables x0, k = 0
while (not converged) do

Obtain pk by approximately solving Eq. (3)

...
end while

As in line search methods, the subproblem must only be
solved approximately
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Gradient-based algorithms for global optimization

Gradient-based algorithms are best-suited for finding local
optima because they “go downhill” until local optimality
conditions are satisfied

To find multiple local optima (and hopefully the global
optimum), gradient-based methods can be run multiple times
using different starting points that should be in different
“basins of attraction”

x

f(x)
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Computation of gradients

To implement gradient-based algorithms, derivative
information must be computed

There are three main ways to compute these gradients

1 Analytical
2 Finite differences
3 Automatic differentiation
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Finite differences

We can approximate the gradient by evaluating the function
several times when the gradient is unavailable analytically

Forward-difference: 1st-order accurate

∂f

∂xi
(x) =

f (x + εei )− f (x)

ε
+ O(ε)

Central-difference: 2nd-order accurate, but twice as
expensive

∂f

∂xi
(x) =

f (x + εei )− f (x − εei )

2ε
+ O(ε2)

Challenge: ε too large → inaccurate, ε too small →
subtractive cancellation due to round-off error
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Automatic differentiation

Use computational representation of a function

Key observations:

1 Any function is composed of a sequence of simple operations
2 The chain rule from calculus. For f (y(x(w))),

df

dw
=

df

dy

dy

dx

dx

dw

Performs differentiation on only basic operations

Avoids subtractive cancellation

Software tools (e.g. ADIFOR) do this automatically
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Why derivative-free algorithms?

Gradients may not be available (f (x) from experiment,
impractical to code analytic gradients)

Noise or non-smoothness in the objective function makes
finite differences inaccurate

May want to direct effort globally (more function evaluations
at more points) rather than locally (more information at the
same points)
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Benefits and drawbacks of derivative-free algorithms

Benefits

Well-suited for discrete variables
Often better at finding the global optimum
Robust with respect to function noise
Useful for multi-objective optimization
Amenable to parallel computing

Drawbacks

Too expensive for many variables
Efficient treatment of general constraints difficult
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Derivative-free algorithm categorization
1 Heuristic: use techniques inspired by nature (global)

Simulated annealing
Genetic algorithms
Swarm intelligence (particle swarm optimization, ant colony
optimization)

2 Direct search: query a sequence of nearby points (local)
Directional: coordinate search, pattern search, generalized
pattern search
Simplicial: Nelder-Mead nonlinear simplex

3 Line search: finite differences adapted to handle noise (local)
Implicit filtering

4 Surrogate-based optimization: use response surfaces (RS)
→ RS types: Kriging, radial basis functions, neural networks

1 Local: trust region model management, surrogate
management framework

2 Global: maximize expected or probability improvement, etc.
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Genetic Algorithms (GAs) were invented in the 1960’s by John
Holland, who wanted to better understand the evolution of
life by computer simulation
The algorithm is based on reproduction (crossover and
mutation) and selection (survival of the fittest)

Figure: Charles Darwin
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minimize
x∈Rn

f (x)

A population member is represented by a point x in the
variable space (it’s DNA)

“Fitness” is the objective function value f (x)

Rather than work with a single point at a time, we consider
an entire population of members at any given time

Because the entire variable space is being constantly searched,
the algorithm is more likely to find a global optimum and
won’t be “trapped” by local optima

Unfortunately, very expensive for problems with many variables
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Overview of genetic algorithm

1 Initialize population

2 Determine mating pool

3 Generate children via crossover

Continuous variables: interpolate
Discrete variables: replace parts of their representing variables

4 Mutation (add randomness to the children’s variables)

5 Evaluate fitness of children

6 Replace worst parents with the children
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Rest of the week

We now know something about formulating, categorizing, and
solving unconstrained minimization problems

We next consider the inclusion of constraints:

1 Constrained optimization
2 PDE-constrained optimization
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