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Goals

An introduction to mathematical optimization, which is quite
useful for many applications spanning a large number of fields

Design (automotive, aerospace, biomechanical)
Control
Signal processing
Communications
Circuit design

Cool and useful applications of the tools learned so far: can
we use finite element modeling to design an aircraft or to
detect internal damage in a structure?
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Course information

Instructor: Kevin Carlberg (carlberg@stanford.edu)

Lectures: There will be five lectures covering

1 Introduction to Engineering Optimization
2 Unconstrained Optimization
3 Constrained Optimization
4 Optimization with PDE constraints

Assignments: There will be a few minor homework and
in-class assignments
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1 Motivation

2 Example

3 Problem Classification
Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

4 Modeling
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Why optimization?

Mathematical optimization: make something the best it can
possibly be.

maximize objective
by choosing variables

subject to constraints

Are you optimizing right now?

objective: learning; variables: actions; constraints: physical
limitations

Perhaps more realistically,

objective: comfort
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Applications

Physics. Nature chooses the state that minimizes an energy
functional (variational principle).

Transportation problems. Minimize cost by choosing routes to
transport goods between warehouses and outlets.

Portfolio optimization. Minimize risk by choosing allocation of
capital among some assets.

Data fitting. Choose a model that best fits observed data.
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Applications with PDE constraints

Design optimization

Model predictive control Figure from R. Findeisen and F. Allgower, “An Introduction to

Nonlinear Model Predictive Control,” 21st Benelux Meeting on Systems and Control, 2002.

differ, there is no guarantee that the closed-loop system will be stable. It is indeed easy to construct examples for

which the closed-loop becomes unstable if a (small) finite horizon is chosen. Hence, when using finite horizons in

standard NMPC, the stage cost cannot be chosen simply based on the desired physical objectives.

The overall basic structure of a NMPC control loop is depicted in Figure 3. As can be seen, it is necessary to estimate

Plant

state estimator

u y

system model

cost function

+
constraints

optimizer

dynamic

NMPC controller

x̂

Figure 3: Basic NMPC control loop.

the system states from the output measurements.

Summarizing the basic NMPC scheme works as follows:

1. obtain measurements/estimates of the states of the system

2. compute an optimal input signal by minimizing a given cost function over a certain prediction horizon in the

future using a model of the system

3. implement the first part of the optimal input signal until new measurements/estimates of the state are avail-

able

4. continue with 1.

From the remarks given so far and from the basic NMPC setup, one can extract the following key characteristics of

NMPC:

NMPC allows the use of a nonlinear model for prediction.

NMPC allows the explicit consideration of state and input constraints.

In NMPC a specified performance criteria is minimized on-line.

In NMPC the predicted behavior is in general different from the closed loop behavior.

The on-line solution of an open-loop optimal control problem is necessary for the application of NMPC.

To perform the prediction the system states must be measured or estimated.

In the remaining sections various aspects of NMPC regarding these properties will be discussed. The next section

focuses on system theoretical aspects of NMPC. Especially the questions on closed-loop stability, robustness and the

output feedback problem are considered.

2 System Theoretical Aspects of NMPC

In this section different system theoretical aspects of NMPC are considered. Besides the question of nominal stability

of the closed-loop, which can be considered as somehow mature today, remarks on robust NMPC strategies as well as

the output-feedback problem are given.

5

Structural damage detection
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Brachistochrone Problem History

One of the first problems posed in the calculus of variations.

Galileo considered the problem in 1638, but his answer was
incorrect.

Johann Bernoulli posed the problem in 1696 to a group of
elite mathematicians:
I, Johann Bernoulli... hope to gain the gratitude of the whole scientific community by placing before the

finest mathematicians of our time a problem which will test their methods and the strength of their

intellect. If someone communicates to me the solution of the proposed problem, I shall publicly declare him

worthy of praise.

Newton solved the problem the very next day, but proclaimed
“I do not love to be dunned [pestered] and teased by
foreigners about mathematical things.”
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Brachistochrone Problem (homework)

Problem: Find the frictionless path that minimizes the time
for a particle to slide from rest under the influence of gravity
between two points A and B separated by vertical height h
and horizontal length b.

Conservation of energy: 1
2 mv 2 + mgh = C

Beltrami Identity: for I (y) =
∫ xB

xA
f (y(x))dx , the stationary

point solution y∗ characterized by δI (y∗) = 0 satisfies
f − y ′ ∂f

∂y ′ = C .
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Numerical Solution

Although the analytic solution is available, an approximate
solution can be computed using numerical optimization
techniques.

Figure: Evolution of the solution using a gradient-based algorithm
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Numerical Solution (for different h)
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Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Mathematical Optimization
Mathematical optimization: the minimization of a function
subject to constraints on the variables. “Standard form”:

minimize
x∈Rn

f (x)

subject to ci (x) = 0, i = 1, . . . , ne

dj(x) ≥ 0, j = 1, . . . , ni

Variables: x ∈ Rn

Objective function: f : Rn → R
Equality constraint functions: ci : Rn → R
Inequality constraint functions: dj : Rn → R

Feasible set: D = {x ∈ Rn | ci (x) = 0, dj(x) ≥ 0}
Different optimization algorithms are appropriate for different
problem types

Kevin Carlberg Lecture 1: Introduction to Engineering Optimization



Outline
Motivation

Example
Problem Classification

Modeling

Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Convex v. non-convex
Convex problems: Convex objective and constraint
functions: g(αx + βy) ≤ αg(x) + βg(y)

f(x)

x

f(x)

x

D D

f(x)

x

convex non-convex

LP (linear programming): linear objective and constraints.
Common in management, finance, economics.
QP (quadratic programming): quadratic objective, linear
constraints. Often arise as algorithm subproblems.

NLP (nonlinear programming): the objective or some
constraints are general nonlinear functions.
Common in the physical sciences.
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Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Convex v. non-convex significance

Convex: a unique optimum (local solution=global solution)

NLP: A global optimum is desired, but can be difficult to find

f(x)

x

Figure: Local and global solutions for a nonlinear objective function.

Local optimization algorithms can be used to find the global
optimum (from different starting points) for NLPs
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Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Continuous v. discrete optimization

Discrete: The feasible set is finite

Always non-convex
Many problems are NP-hard
Sub-types: combinatorial optimization, integer programming
Example: How many warehouses should we build?

Continuous: The feasible set is uncountably infinite

Continuous problems are often much easier to solve because
derivative information can be exploited
Example: How thick should airplane wing skin be?

Discrete problems are often reformulated as a sequence of
continuous problems (e.g. branch and bound methods)
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Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Constrained v. unconstrained

Unconstrained problems (ne = ni = 0) are usually easier to
solve

Constrained problems are thus often reformulated as a
sequence of unconstrained problems (e.g. penalty methods)
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Convex v. non-convex
Continuous v. discrete
Constrained v. unconstrained
Single-objective v. multi-objective

Single-objective v. Multi-objective optimization

We may want to optimize two competing objectives f1 and f2

(e.g. manufacturing cost and performance)

Pareto frontier: set of candidate solutions among which no
solution is better than any other solution in both objectives

f1

f2

These problems are often solved using evolutionary algorithms
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Modeling

Modeling: the process of identifying the objective, variables,
and constraints for a given problem

Modeling
Algorithm
selection

Parameter
selection

Solution

Yes

No
Makes sense?

Finished

The more abstract the problem, the more difficult modeling
becomes
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Example (Homework)

You live in a house with two other housemates and two
vacancies. You are trying to choose two of your twenty mutual
friends (who all want to live there) to fill the vacancies.

? ?

Model the problem as a mathematical optimization problem,
and categorize the problem as constrained/unconstrained,
continuous/discrete, convex/NLP, and single/multi-objective
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Rest of the week

Unconstrained optimization

Constrained optimization

PDE-constrained optimization
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