Kevin Carlberg is a Distinguished Member of Technical Staff at Sandia National
Laboratories in Livermore, California. He leads a research group of PhD
students, postdocs, and technical staff whose work combines concepts from
machine learning, computational physics, and high-performance computing to
drastically reduce the cost of simulating nonlinear dynamical systems at
extreme scale.
Current national-security applications include a range of
problems in mechanical and aerospace engineering such as hypersonic vehicles,
turbulent flows over store-in-cavity configurations, and high-speed
gas-transfer systems.
His recent plenary talk at the ICERM Workshop on Scientific Machine Learning summarizes his group’s work.
In many applications, projection-based reduced-order models (ROMs) have demonstrated the ability to provide rapid approximate solutions to high-fidelity full-order models (FOMs). However, there is no a priori assurance that these approximate solutions are accurate; their accuracy depends on the ability of the low-dimensional trial basis to represent the FOM solution. As a result, ROMs can generate inaccurate approximate solutions, e.g., when the FOM solution at the online prediction point is not well represented by training data used to construct the trial basis. To address this fundamental deficiency of standard model-reduction approaches, this work proposes a novel online-adaptive mechanism for efficiently enriching the trial basis in a manner that ensures convergence of the ROM to the FOM, yet does not incur any FOM solves. The mechanism is based on the previously proposed adaptive $h$-refinement method for ROMs [12], but improves upon this work in two crucial ways. First, the proposed method enables basis refinement with respect to any orthogonal basis (not just the Kronecker basis), thereby generalizing the refinement mechanism and enabling it to be tailored to the physics characterizing the problem at hand. Second, the proposed method provides a fast online algorithm for periodically compressing the enriched basis via an efficient proper orthogonal decomposition (POD) method, which does not incur any operations that scale with the FOM dimension. These two features allow the proposed method to serve as (1) a failsafe mechanism for ROMs, as the method enables the ROM to satisfy any prescribed error tolerance online (even in the case of inadequate training), and (2) an efficient online basis-adaptation mechanism, as the combination of basis enrichment and compression enables the basis to adapt online while controlling its dimension.
Nearly all model-reduction techniques project the governing equations onto a linear subspace of the original state space. Such subspaces are typically computed using methods such as balanced truncation, rational interpolation, the reduced-basis method, and (balanced) POD. Unfortunately, restricting the state to evolve in a linear subspace imposes a fundamental limitation to the accuracy of the resulting reduced-order model (ROM). In particular, linear-subspace ROMs can be expected to produce low-dimensional models with high accuracy only if the problem admits a fast decaying Kolmogorov $n$-width (e.g., diffusion-dominated problems). Unfortunately, many problems of interest exhibit a slowly decaying Kolmogorov $n$-width (e.g., advection-dominated problems). To address this, we propose a novel framework for projecting dynamical systems onto nonlinear manifolds using minimum-residual formulations at the time-continuous and time-discrete levels; the former leads to extit{manifold Galerkin} projection, while the latter leads to extit{manifold least-squares Petrov–Galerkin} (LSPG) projection. We perform analyses that provide insight into the relationship between these proposed approaches and classical linear-subspace reduced-order models. We also propose a computationally practical approach for computing the nonlinear manifold, which is based on convolutional autoencoders from deep learning. Finally, we demonstrate the ability of the method to significantly outperform even the optimal linear-subspace ROM on benchmark advection-dominated problems, thereby demonstrating the method’s ability to overcome the intrinsic $n$-width limitations of linear subspaces.
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous represen- tation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.
Introduction to Mathematical Optimization, Institute for Computational and Mathematical Engineering (ICME) Fundamentals of Data Science Summer Workshops, Stanford, CA (Summers 2017, 2018). Curriculum co-developer.
Introduction to Engineering Optimization, Army High-Performance Computing Research Center Summer Institute, Stanford, CA (Summer 2009). Curriculum developer.